Package: pedometrics (via r-universe)

September 13, 2024

Version 0.12.1

Date 2022-06-18

Title Miscellaneous Pedometric Tools

Description An R implementation of methods employed in the field of pedometrics, soil science discipline dedicated to studying the spatial, temporal, and spatio-temporal variation of soil using statistical and computational methods. The methods found here include the calibration of linear regression models using covariate selection strategies, computation of summary validation statistics for predictions, generation of summary plots, evaluation of the local quality of a geostatistical model of uncertainty, and so on. Other functions simply extend the functionalities of or facilitate the usage of functions from other packages that are commonly used for the analysis of soil data. Formerly available versions of suggested packages no longer available from CRAN can be obtained from the CRAN archive <<https://cran.r-project.org/src/contrib/Archive/>>.

URL <https://github.com/Laboratorio-de-Pedometria/pedometrics-package>

BugReports <https://github.com/Laboratorio-de-Pedometria/pedometrics-package/issues>

Depends $R (= 3.2.0)$

Imports lattice, latticeExtra, $\text{Rcpp} (> = 0.12.0)$

LinkingTo Rcpp

Suggests car, fields, georob, grDevices, grid, gstat, knitr, MASS, methods, sp, SpatialTools

License GPL $(>= 2)$

Encoding UTF-8

RoxygenNote 7.2.0

SystemRequirements pandoc

Roxygen list(markdown = TRUE)

Language en-US

Repository https://laboratorio-de-pedometria.r-universe.dev RemoteUrl https://github.com/laboratorio-de-pedometria/pedometrics-package RemoteRef HEAD RemoteSha d01fb5d6fa497799313a89f344695b43c4b7fdbd

Contents

pedometrics-package *Pedometric Tools and Techniques*

Description

This package contains many tools and techniques used in the field of pedometrics (see https://en.wikipedia.org/wiki/Pedometr for a definition of *pedometrics*). These tools and techniques were developed to fulfill the demands created by the PhD research project (2012-2016) entitled "Contribution to the Construction of Models for Predicting Soil Properties", developed by Alessandro Samuel-Rosa under the supervision of Dr Lúcia HC Anjos (Universidade Federal Rural do Rio de Janeiro, Brazil), Dr Gustavo M Vasques (Embrapa Solos, Brazil), and Dr Gerard B M Heuvelink (ISRIC - World Soil Information, the Netherlands). The project is/was funded by the CNPq Foundation (Process 140720/2012-0), Ministry of Science and Technology of Brazil, Brasília, DF, 70040-020, Brazil, phone +55 (61) 2022 6002, and the CAPES Foundation (Process ID BEX 11677/13-9), Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil, phone: +55 (61) 2022 6210.

 adjR2 3

Details

Several functions simply extend the functionalities of other functions commonly used for the analysis of pedometric data. It should be noted that changes are likely to occur quite often and the use of this package as a dependency for other packages is strongly discouraged.

Author(s)

Author and Maintainer: Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>.

adjR2 *Adjusted coefficient of determination*

Description

Calculates the adjusted coefficient of determination of a multiple linear regression model.

Usage

adjR2(r2, n, p)

Arguments

Value

A numeric vector with the adjusted coefficient of determination.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Coefficient of determination. Wikipedia, The Free Encyclopedia. Available at [https://en.wikiped](https://en.wikipedia.org/wiki/Coefficient_of_determination)ia. [org/wiki/Coefficient_of_determination](https://en.wikipedia.org/wiki/Coefficient_of_determination).

Examples

 $x \le -$ adjR2(r2 = 0.95, n = 100, p = 80)

Description

Take the bounding box of a Spatial* object and create a SpatialPoints* or SpatialPolygons* object from it.

Usage

bbox2sp(obj, sp = "SpatialPolygons", keep.crs = TRUE)

Arguments

Value

An object of class SpatialPoints* or SpatialPolygons*.

Dependencies

The sp package, provider of classes and methods for spatial data in R, is required for [bbox2sp\(\)](#page-3-1) to work. The development version of the sp package is available on [https://github.com/edzer/](https://github.com/edzer/sp/) [sp/](https://github.com/edzer/sp/) while its old versions are available on the CRAN archive at [https://cran.r-project.org/](https://cran.r-project.org/src/contrib/Archive/sp/) [src/contrib/Archive/sp/](https://cran.r-project.org/src/contrib/Archive/sp/).

Note

Some of the solutions used to build this function were found in the source code of the R-package intamapInteractive. As such, the authors of that package, Edzer Pebesma <edzer.pebesma@uni-muenster.de> and Jon Skoien <jon.skoien@gmail.com>, are entitled 'contributors' to the R-package pedometrics.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Edzer Pebesma, Jon Skoien with contributions from Olivier Baume, A. Chorti, D.T. Hristopulos, S.J. Melles and G. Spiliopoulos (2013). *intamapInteractive: procedures for automated interpolation - methods only to be used interactively, not included in intamap package.* R package version 1.1-10. <https://CRAN.R-project.org/package=intamapInteractive>.

buildModelSeries 5

Examples

```
if (require(sp)) {
 data(meuse, package = "sp")
 sp::coordinates(mouse) < - \sim x + ybb <- bbox2sp(obj = meuse, keep.crs = FALSE)
}
```
buildModelSeries *Build a series of linear models using automated variable selection*

Description

Build a series of linear models with [stats::lm\(\)](#page-0-0) using one or more automated variable selection methods implemented in the functions [stepVIF\(\)](#page-31-1) and MASS:: stepAIC().

Usage

```
buildModelSeries(
  formula,
  data,
  vif = FALSE,
  vif.threshold = 10,
  vif.verbose = FALSE,
  \text{aic} = \text{FALSE},
  aic.direction = "both",
  aic.trace = FALSE,
  aic. steps = 5000,...
)
buildMS(
  formula,
  data,
  vif = FALSE,
  vif.threshold = 10,
  vif.verbose = FALSE,
  aic = FALSE,
  aic.direction = "both",
  aic.trace = FALSE,
  aic.steps = 5000,
  ...
)
```
Arguments

formula A list containing one or several model formulas (a symbolic description of the model to be fitted).

Details

[buildModelSeries\(\)](#page-4-1) was devised to deal with a list of linear model formulas. The main objective is to bring together several functions commonly used when building linear models, such as automated variable selection. In the current implementation, variable selection can be done using [stepVIF\(\)](#page-31-1) or [MASS::stepAIC\(\)](#page-0-0) or both. [stepVIF\(\)](#page-31-1) is a backward variable selection procedure, while [MASS::stepAIC\(\)](#page-0-0) supports backward, forward, and bidirectional variable selection. For more information about these functions, please visit their respective help pages.

An important feature of [buildModelSeries\(\)](#page-4-1) is that it records the initial number of candidate predictor variables and observations offered to the model, and adds this information as an attribute to the final selected model. Such feature was included because variable selection procedures result biased linear models (too optimistic), and the effective number of degrees of freedom is close to the number of candidate predictor variables initially offered to the model (Harrell, 2001). With the initial number of candidate predictor variables and observations offered to the model, one can calculate penalized or adjusted measures of model performance. For models built using [buildModelSeries\(\)](#page-4-1), this can be done using [statsModelSeries\(\)](#page-29-1).

Some important details should be clear when using [buildModelSeries\(\)](#page-4-1):

- this function was originally devised to deal with a list of formulas, but can also be used with a single formula;
- in the current implementation, [stepVIF\(\)](#page-31-1) runs before MASS:: stepAIC();
- function arguments imported from MASS:: stepAIC() and [stepVIF\(\)](#page-31-1) were named as in the original functions, and received a prefix (aic or v if) to help the user identifying which function is affected by a given argument without having to go check the documentation.

Value

A list containing the fitted linear models.

buildModelSeries 7

TODO

Add option to set the order in which MASS:: stepAIC() and [stepVIF\(\)](#page-31-1) are run.

Dependencies

The MASS package, provider of support functions and datasets for Venables and Ripley's Modern Applied Statistics with S, is required for [buildModelSeries\(\)](#page-4-1) to work. The development version of the MASS package is available on <https://www.stats.ox.ac.uk/pub/MASS4/> while its old versions are available on the CRAN archive at [https://cran.r-project.org/src/contrib/](https://cran.r-project.org/src/contrib/Archive/MASS/) [Archive/MASS/](https://cran.r-project.org/src/contrib/Archive/MASS/).

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Harrell, F. E. (2001) *Regression modelling strategies: with applications to linear models, logistic regression, and survival analysis.* First edition. New York: Springer.

Venables, W. N. and Ripley, B. D. (2002) *Modern applied statistics with S.* Fourth edition. New York: Springer.

A. Samuel-Rosa, G. B. M. Heuvelink, G. de Mattos Vasques, and L. H. C. dos Anjos, Do more detailed environmental covariates deliver more accurate soil maps?, *Geoderma*, vol. 243–244, pp. 214–227, May 2015, doi: 10.1016/j.geoderma.2014.12.017.

See Also

[stepVIF\(\)](#page-31-1), [statsMS\(\)](#page-29-2)

```
if (interactive()) {
 # based on the second example of MASS::stepAIC()
 library("MASS")
 cpus1 <- cpusfor(v in names(cpus)[2:7])
    cpus1[[v]] <- cut(cpus[[v]], unique(stats::quantile(cpus[[v]])),
                      include.lowest = TRUE)
 cpus0 <- cpus1[, 2:8] # excludes names, authors' predictions
 cpus.samp <- sample(1:209, 100)
 cpus.form \le list(formula(log10(perf) \sim syct + mmin + mmax + cach + chmin +
                    chmax + perf),
                    formula(log10(perf) \sim syct + mmin + cach + chmin + chmax),
                    formula(log10(perf) \sim mmax + cach + chmin + chmax + perf))
 data <- cpus1[cpus.samp,2:8]
 cpus.ms <- buildModelSeries(cpus.form, data, vif = TRUE, aic = TRUE)
}
```


Description

Evaluate the local quality of a geostatistical model of uncertainty (GMU) using summary measures and graphical displays.

Usage

```
checkGMU(
  observed,
  simulated,
  pi = seq(0.01, 0.99, 0.01),
  symmetric = TRUE,
 plotit = TRUE
)
```
Arguments

Details

There is no standard way of evaluating the local quality of a GMU. The collection of summary measures and graphical displays presented here is far from being comprehensive. A few definitions are given bellow.

Error statistics: Error statistics measure how well the GMU predicts the measured values at the validation points. Four error statistics are presented:

- Mean error (ME) Measures the bias of the predictions of the GMU, being defined as the mean of the differences between the average of the simulated values and the observed values, i.e. the average of all simulations is taken as the predicted value.
- Mean squared error (MSE) Measures the accuracy of the predictions of the GMU, being defined as the mean of the squared differences between the average of the simulated values and the observed values.
- Scaled root mean squared error (SRMSE) Measures how well the GMU estimate of the prediction error variance (PEV) approximates the observed prediction error variance, where the first is given by the variance of the simulated values, while the second is given by the squared differences between the average of the simulated values, i.e. the squared error (SE). The SRMSE is computed as the average of SE / PEV , where $SRMSE > 1$ indicates underestimation, while SRMSE < 1 indicates overestimation.
- Pearson correlation coefficient Measures how close the GMU predictions are to the observed values. A scatter plot of the observed values versus the average of the simulated values can be used to check for possible unwanted outliers and non-linearities. The square of the Pearson correlation coefficient measures the fraction of the overall spread of observed values that is explained by the GMU, that is, the amount of variance explained (AVE), also known as coefficient of determination or ratio of scatter.

Coverage probabilities: The coverage probability of an interval is given by the number of times that that interval contains its parameter over several replications of an experiment. For example, consider the interquartile range $IQR = Q3 - Q1$ of a Gaussian distributed variable with mean equal to zero and variance equal to one. The nominal coverage probability of the IQR is 0.5, i.e. two quarters of the data fall within the IQR. Suppose we generate a Gaussian distributed *random* variable with the same mean and variance and count the number of values that fall within the IQR defined above: about 0.5 of its values will fall within the IQR. If we continue generating Gaussian distributed *random* variables with the same mean and variance, on average, 0.5 of the values will fall in that interval.

Coverage probabilities are very useful to evaluate the local quality of a GMU: the closer the observed coverage probabilities of a sequence of probability intervals (PI) are to the nominal coverage probabilities of those PIs, the better the modeling of the local uncertainty.

Two types of PIs can be used here: symmetric, median-centered PIs, and left-bounded PIs. Papritz & Dubois (1999) recommend using left-bounded PIs because they are better at evidencing deviations for both large and small PIs. The authors also point that the coverage probabilities of the symmetric, median-centered PIs can be read from the coverage probability plots produced using left-bounded PIs.

In both cases, the PIs are computed at each validation location using the quantiles of the conditional cumulative distribution function (ccdf) defined by the set of realizations at that validation location. For a sequence of PIs of increasing width, we check which of them contains the observed value at all validation locations. We then average the results over all validation locations to compute the proportion of PIs (with the same width) that contains the observed value: this gives the coverage probability of the PIs.

Deutsch (1997) proposed three summary measures of the coverage probabilities to assess the local *goodness* of a GMU: accuracy (\$A\$), precision (\$P\$), and goodness (\$G\$). According to Deutsch (1997), a GMU can be considered "good" if it is both accurate and precise. Although easy to compute, these measures seem not to have been explored by many geostatisticians, except for the studies developed by Pierre Goovaerts and his later software implementation (Goovaerts, 2009). Richmond (2001) suggests that they should not be used as the only measures of the local quality of a GMU.

Accuracy An accurate GMU is that for which the proportion p^* of true values falling within the \$p\$ PI is equal to or larger than the nominal probability \$p\$, that is, when $p^* \geq p$. In the coverage probability plot, a GMU will be more accurate when all points are on or above the 1:1 line. The range of \$A\$ goes from 0 (lest accurate) to 1 (most accurate).

- **Precision** The *precision*, \$P\$, is defined only for an accurate GMU, and measures how close p^* is to \$p\$. The range of \$P\$ goes from 0 (lest precise) to 1 (most precise). Thus, a GMU will be more accurate when all points in the PI-width plot are on or above the 1:1 line.
- Goodness The *goodness*, \$G\$, is a measure of the departure of the points from the 1:1 line in the coverage probability plot. \$G\$ ranges from 0 (minimum goodness) to 1 (maximum goodness), the maximum \$G\$ being achieved when $p^* = p$, that is, all points in both coverage probability and interval width plots are exactly on the 1:1 line.

It is worth noting that the coverage probability and PI-width plots are relevant mainly to GMU created using *conditional simulations*, that is, simulations that are locally conditioned to the data observed at the validation locations. Conditioning the simulations locally serves the purposes of honoring the available data and reducing the variance of the output realizations. This is why one would like to find the points falling above the 1:1 line in both coverage probability and PI-width plots. For *unconditional simulations*, that is, simulations that are only globally conditioned to the histogram (and variogram) of the data observed at the validation locations, one would expect to find that, over a large number of simulations, the whole set of possible values (i.e. the global histogram) can be generated at any node of the simulation grid. In other words, it is expected to find all points on the 1:1 line in both coverage probability and PI-width plots. Deviations from the 1:1 line could then be used as evidence of problems in the simulation.

Value

A list of summary measures and plots of the coverage probability and width of probability intervals.

Note

Comments by Pierre Goovaerts <pierre.goovaerts@biomedware.com> were important to describe how to use the coverage probability and PI-width plots when a GMU is created using unconditional simulations.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Deutsch, C. Direct assessment of local accuracy and precision. Baafi, E. Y. & Schofield, N. A. (Eds.) *Geostatistics Wollongong '96*. Dordrecht: Kinwer Academic Publishers, v. I, p. 115-125, 1997.

Papritz, A. & Dubois, J. R. Mapping heavy metals in soil by (non-)linear kriging: an empirical validation. Gómez-Hernández, J.; Soares, A. & Froidevaux, R. (Eds.) *geoENV II – Geostatistics for Environmental Applications*. Springer, p. 429-440, 1999.

Goovaerts, P. Geostatistical modelling of uncertainty in soil science. *Geoderma*. v. 103, p. 3 - 26, 2001.

Goovaerts, P. AUTO-IK: a 2D indicator kriging program for the automated non-parametric modeling of local uncertainty in earth sciences. *Computers & Geosciences*. v. 35, p. 1255-1270, 2009.

Richmond, A. J. Maximum profitability with minimum risk and effort. Xie, H.; Wang, Y. & Jiang, Y. (Eds.) *Proceedings 29th APCOM*. Lisse: A. A. Balkema, p. 45-50, 2001.

cont2cat 11

Ripley, B. D. *Stochastic simulation*. New York: John Wiley & Sons, p. 237, 1987.

Examples

```
if (interactive()) {
 set.seed(2001)
 observed <- round(rnorm(100), 3)
 simulated <- t(
   sapply(1:length(observed), function (i) round(rnorm(100), 3)))
 resa <- checkGMU(observed, simulated, symmetric = T)
 resb <- checkGMU(observed, simulated, symmetric = F)
 resa$error; resb$error
 resa$goodness; resb$goodness
}
```
cont2cat *Categorize/stratify numerical variable(s)*

Description

Create break points, compute strata proportions, and stratify numerical variable(s) to create categorical variable(s).

Usage

```
cont2cat(x, breaks, integer = FALSE)
breakPoints(x, n, type = "area", prop = FALSE)
stratify(x, n, type = "area", integer = FALSE)
```
Arguments

Details

Argument breaks must be a vector if x is a vector, but a list if x is a data frame or matrix. Using a list allows breaking each column of x into different number of categories.

Value

A vector, data frame, or matrix, depending on the class of x.

Dependencies

The **SpatialTools** package, provider of tools for spatial data analysis in R, is required for [breakPoints\(\)](#page-10-1) and [stratify\(\)](#page-10-1) to work. The development version of the **SpatialTools** package is available on <https://github.com/jfrench/SpatialTools> while its old versions are available on the CRAN archive at <https://cran.r-project.org/src/contrib/Archive/SpatialTools/>.

Reverse dependencies

The spsann package, provider of methods for the optimization of sample configurations using spatial simulated annealing in R, requires [breakPoints\(\)](#page-10-1), [cont2cat\(\)](#page-10-2) and [stratify\(\)](#page-10-1) for some of its functions to work. The development version of the **spsann** package is available on [https:](https://github.com/Laboratorio-de-Pedometria/spsann-package) [//github.com/Laboratorio-de-Pedometria/spsann-package](https://github.com/Laboratorio-de-Pedometria/spsann-package).

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

B. Minasny and A. B. McBratney. A conditioned Latin hypercube method for sampling in the presence of ancillary information. *Computers & Geosciences*, vol. 32, no. 9, pp. 1378–1388, Nov. 2006, doi: 10.1016/j.cageo.2005.12.009.

T. Hengl, D. G. Rossiter, and A. Stein. Soil sampling strategies for spatial prediction by correlation with auxiliary maps. *Australian Journal of Soil Research*, vol. 41, no. 8, pp. 1403–1422, 2003, doi: 10.1071/SR03005.

```
if (require(SpatialTools)) {
 ## Compute the break points of marginal strata
 x \le data.frame(x = round(rnorm(10), 1), y = round(rlnorm(10), 1))
 x \le - breakPoints(x = x, n = 4, type = "area", prop = TRUE)
 ## Convert numerical data into categorical data
 # Matrix
 x \le -y \le -c(1:10)x \leftarrow \text{cbind}(x, y)breaks \le list(c(1, 2, 4, 8, 10), c(1, 5, 10))
 y <- cont2cat(x, breaks)
 # Data frame
```
coordenadas and the set of the set

```
x \le -y \le -c(1:10)x \leftarrow data.frame(x, y)breaks <- list(c(1, 2, 4, 8, 10), c(1, 5, 10))
 y <- cont2cat(x, breaks, integer = TRUE)
 # Vector
 x \leq -c(1:10)breaks <- c(1, 2, 4, 8, 10)
 y <- cont2cat(x, breaks, integer = TRUE)
 ## Stratification
 x \le data.frame(x = round(rlnorm(10), 1), y = round(rnorm(10), 1))
 x \le - stratify(x = x, n = 4, type = "area", integer = TRUE)
 x
}
```
coordenadas *Defunct functions*

Description

The functions listed here are no longer part of the **pedometrics** package. If you need to use any of these functions, you can still find them at <https://github.com/samuel-rosa/ASRtools> or <https://cran.r-project.org/src/contrib/Archive/pedometrics/>.

Usage

```
coordenadas(...)
cdfPlot(...)
cdfStats(...)
cdfTable(...)
gcpDiff(...)
trend.terms(...)
trend.matrix(...)
```
Arguments

... Not used.

Value

No return value, called for side effects.

14 cramer

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com> Tony Olsen < Olsen. Tony@epa.gov> Tom Kincaid <Kincaid.Tom@epa.gov>

cramer *Association between categorical variables*

Description

Compute the Cramer's V, a descriptive statistic that measures the association between categorical variables.

Usage

cramer(x)

Arguments

x Data frame or matrix with a set of categorical variables.

Details

Any integer variable is internally converted to a factor.

Value

A matrix with the Cramer's V between the categorical variables.

Reverse dependencies

The spsann package, provider of methods for the optimization of sample configurations using spatial simulated annealing in R, requires [cramer\(\)](#page-13-1) for some of its functions to work. The development version of the spsann package is available on [https://github.com/Laboratorio-de-Pedometria](https://github.com/Laboratorio-de-Pedometria/spsann-package)/ [spsann-package](https://github.com/Laboratorio-de-Pedometria/spsann-package).

Note

The original code is available at <https://sas-and-r.blogspot.com/>, Example 8.39: calculating Cramer's V, posted by Ken Kleinman on Friday, June 3, 2011. As such, Ken Kleinman <Ken_Kleinman@hms.harvard.edu> is entitled a 'contributor' to the R-package pedometrics.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

gcpVector and the set of the set of

References

Cramér, H. *Mathematical methods of statistics*. Princeton: Princeton University Press, p. 575, 1946.

Everitt, B. S. *The Cambridge dictionary of statistics*. Cambridge: Cambridge University Press, p. 432, 2006.

Examples

```
if (interactive()) {
 data(meuse, package = "sp")
 str(meuse)
 test <- cramer(meuse[, c("ffreq", "soil", "lime", "landuse")])
}
```
gcpVector *Calculate module and azimuth*

Description

Calculate the module and azimuth of the difference on x and y coordinates between two sets of ground control points (GCP). It is suited to perform calculations for topographical coordinates only. The origin is set in the y coordinate, and rotation performed clockwise.

Usage

gcpVector(dx, dy)

Arguments

Value

A data frame containing the module, its square and azimuth. These three columns are named 'module', 'sq.module' and 'azimuth'.

Note

This function was adapted from package's VecStatGraphs2D function LoadData().

Author(s)

Juan Carlos Ruiz Cuetos <bilba_t@hotmail.com> Maria Eugenia Polo Garcia <mepolo@unex.es> Pablo Garcia Rodriguez <pablogr@unex.es> Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Ruiz-Cuetos J.C., Polo M.E. and Rodriguez P.G. (2012). *VecStatGraphs2D: Vector analysis using graphical and analytical methods in 2D*. R package version 1.6. [https://CRAN.R-project.org/](https://CRAN.R-project.org/package=VecStatGraphs2D) [package=VecStatGraphs2D](https://CRAN.R-project.org/package=VecStatGraphs2D).

Examples

 $x \leq -$ gcpVector(dx = rnorm(3, 5, 10), dy = rnorm(3, 5, 10))

isNumint *Tests for data types*

Description

Evaluate the data type contained in an object.

Usage

isNumint(x)

allNumint(x)

anyNumint(x)

whichNumint(x)

allInteger(x)

anyInteger(x)

whichInteger(x)

allFactor(x)

anyFactor(x)

whichFactor(x)

allNumeric(x)

anyNumeric(x)

whichNumeric(x)

uniqueClass(x)

plotCor and the set of t

Arguments

x Object to be tested.

Value

TRUE or FALSE depending on whether x contains a given data type.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

See Also

[base::is.numeric\(\)](#page-0-0), [base::is.integer\(\)](#page-0-0), [base::is.factor\(\)](#page-0-0).

Examples

```
# Vector of integers
x < -1:10isNumint(x) # FALSE
# Vector of numeric integers
x \leftarrow as.numeric(x)isNumint(x) # TRUE
# Vector of numeric values
x <- c(1.1, 1, 1, 1, 2)
isNumint(x) # FALSE
allNumint(x) # FALSE
anyNumint(x) # TRUE
whichNumint(x)
# Single numeric integer
isNumint(1) # TRUE
# Single numeric value
isNumint(1.1) # FALSE
```
plotCor *Correlation plot*

Description

Plotting correlation matrices.

Usage

plotCor(r, r2, col, breaks, col.names, ...)

Arguments

Details

A correlation plot in an alternative way of showing the strength of the empirical correlations between variables. This is done by using a diverging color palette, where the darker the color, the stronger the absolute correlation value.

[plotCor\(\)](#page-16-1) can also be used to compare correlations between the same variables at different points in time or space or for different observations. This is done by passing two square correlation matrices using arguments r and r2. The lower triangle of the resulting correlation plot will contain correlations from r, correlations from r2 will be in the upper triangle, and the diagonal will be empty.

Value

A correlation plot.

Dependencies

The fields package, provider of tools for spatial data in R, is required for [plotCor\(\)](#page-16-1) to work. The development version of the fields package is available on [https://github.com/dnychka/](https://github.com/dnychka/fieldsRPackage) [fieldsRPackage](https://github.com/dnychka/fieldsRPackage) while its old versions are available on the CRAN archive at [https://cran.](https://cran.r-project.org/src/contrib/Archive/fields/) [r-project.org/src/contrib/Archive/fields/](https://cran.r-project.org/src/contrib/Archive/fields/).

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Neuwirth E (2022). *RColorBrewer: ColorBrewer Palettes*. R package version 1.1-3, [https://](https://CRAN.R-project.org/package=RColorBrewer) CRAN.R-project.org/package=RColorBrewer.

```
if (all(c(require(sp), require(fields)))) {
 data(meuse, package = "sp")
 cols <- c("cadmium", "copper", "lead", "zinc", "elev", "dist", "om")
```
plotESDA 19

```
# A single correlation matrix
 r <- cor(meuse[1:20, cols], use = "complete")
 r <- round(r, 2)
 plotCor(r)
 # Two correlation matrices: r2 goes in the upper triangle
 r2 <- cor(meuse[21:40, cols], use = "complete")
 r2 \le r round(r2, 2)
 plotCor(r, r2)
}
```


plotESDA *Plots for exploratory spatial data analysis (ESDA)*

Description

Create four plots for exploratory spatial data analysis (ESDA): histogram + density plot, bubble plot, variogram plot, and variogram map.

Usage

```
plotESDA(
 z,
 lat,
 lon,
 lags = NULL,cutoff = NULL,
 width = c(cutoff/20),
 leg.pos = "right")
```
Arguments

Details

The user should visit the help pages of [gstat::variogram\(\)](#page-0-0), [plotHD\(\)](#page-20-1), [sp::bubble\(\)](#page-0-0) and [sp::spplot\(\)](#page-0-0) to obtain more details about the main functions used to built [plotESDA\(\)](#page-18-1).

Value

Four plots: histogram and density plot, bubble plot, empirical variogram, and variogram map.

Dependencies

The sp package, provider of classes and methods for spatial data in R, is required for [plotESDA\(\)](#page-18-1) to work. The development version of the sp package is available on [https://github.com/edzer/](https://github.com/edzer/sp/) [sp/](https://github.com/edzer/sp/) while its old versions are available on the CRAN archive at [https://cran.r-project.org/](https://cran.r-project.org/src/contrib/Archive/sp/) [src/contrib/Archive/sp/](https://cran.r-project.org/src/contrib/Archive/sp/).

The gstat package, provider of methods for spatial and spatio-temporal geostatistical modelling, prediction and simulation in R, is required for [plotESDA\(\)](#page-18-1) to work. The development version of the sp package is available on <https://github.com/r-spatial/gstat> while its old versions are available on the CRAN archive at [https://cran.r-project.org/src/contrib/Archive/](https://cran.r-project.org/src/contrib/Archive/gstat/) [gstat/](https://cran.r-project.org/src/contrib/Archive/gstat/).

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Cressie, N.A.C. (1993) *Statistics for Spatial Data*. New York: John Wiley and Sons, p.900, 1993.

Pebesma, E.J. (2004) Multivariable geostatistics in S: the gstat package. *Computers and Geosciences*, 30:683-691, 2004.

Webster, R., Oliver, M.A. *Geostatistics for environmental scientists*. Chichester: John Wiley and Sons, p.315, 2007.

See Also

[plotHD\(\)](#page-20-1)

```
if (all(require(sp), require(gstat))) {
 data(meuse, package = "sp")
 p <- plotESDA(z = meuse$zinc, lat = meuse$y, lon = meuse$x)
}
```


Description

Plot a histogram and a density plot of a single variable using the R-package lattice.

Usage

```
plotHist(
  x,
 HD = "over",nint = 20,
  digits = 2,
  stats = TRUE,
 BoxCox = FALSE,
  col = c("lightgray", "black"),
  1wd = c(1, 1),lty = "dashed",
  xlim,
 ylim,
  ...
\mathcal{L}plotHD(
  x,
 HD = "over",nint = 20,
 digits = 2,
  stats = TRUE,
 BoxCox = FALSE,
 col = c("lightgray", "black"),
  1wd = c(1, 1),lty = "dashed",
  xlim,
 ylim,
  ...
)
```
Arguments

"over", to create a histogram superimposed by the theoretical density plot of a normally distributed variable, and "stack", to create a histogram and an empirical density plot in separated panels. Defaults to HD = "over".

Details

The user should visit the help pages of [lattice::histogram\(\)](#page-0-0), [lattice::densityplot\(\)](#page-0-0), lattice::panel.mathdensit [car::powerTransform\(\)](#page-0-0), and [car::bcPower\(\)](#page-0-0) to obtain more details about the main functions used to built [plotHD\(\)](#page-20-1).

Value

An object of class "trellis". The [lattice::update.trellis\(\)](#page-0-0) method can be used to update components of the object and the [lattice::print.trellis\(\)](#page-0-0) print method (usually called by default) will plot it on an appropriate plotting device.

Dependencies

The car package, provider of functions to accompany Fox and Weisberg's An R Companion to Applied Regression, is required for [plotHist\(\)](#page-20-2) to work. The development version of the car package is available on <https://r-forge.r-project.org/projects/car/> while its old versions are available on the CRAN archive at [https://cran.r-project.org/src/contrib/Archive/](https://cran.r-project.org/src/contrib/Archive/car/) [car/](https://cran.r-project.org/src/contrib/Archive/car/).

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

plotModelSeries 23

References

```
Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R, Springer. http://
lmdvr.r-forge.r-project.org/
```
See Also

[lattice::histogram\(\)](#page-0-0), [lattice::densityplot\(\)](#page-0-0), [lattice::panel.mathdensity\(\)](#page-0-0)

Examples

```
if (all(c(require(car), require(lattice), require(latticeExtra)))) {
  x \le - rnorm(100, 10, 2)
  p1 <- plotHist(x, HD = "stack")
 p2 \leq -\text{plotHist}(x, HD = "over")}
```
plotModelSeries *Model series plot*

Description

Produce a graphical output to examine the effect of using different model specifications (design) on the predictive performance of these models (a model series). Devised to access the results of [buildModelSeries\(\)](#page-4-1) and [statsMS\(\)](#page-29-2), but can be easily adapted to work with any model structure and performance measure.

Usage

```
plotModelSeries(
  obj,
  grid,
  line,
  ind,
  type = c("b", "g"),
  pch = c(20, 2),
  size = 0.5,
  array = "desc",color = NULL,
  xlim = NULL,ylab = NULL,
 xlab = NULL,at = NULL,...
)
plotMS(
  obj,
```

```
grid,
 line,
  ind,
 type = c("b", "g"),
 pch = c(20, 2),
 size = 0.5,
 arrange = "desc",
 color = NULL,
 xlim = NULL,
 ylab = NULL,
 xlab = NULL,
 at = NULL,...
\mathcal{L}
```
Arguments

Details

This section gives more details about arguments obj, grid, line, arrange, and ind.

obj: The argument obj usually constitutes a data.frame returned by [statsMS\(\)](#page-29-2). However, the user can use any data.frame object as far as it contains the two basic units of information needed:

- 1. design data passed with argument grid
- 2. performance statistic passed with argument line

grid: The argument grid indicates the *design* data which is used to produce the grid output in the top of the model series plot. By *design* we mean the data that specify the structure of each model and how they differ from each other. Suppose that eight linear models were fit using three types of predictor variables (a, b, and c). Each of these predictor variables is available in two versions that differ by their accuracy, where θ means a less accurate predictor variable, while 1 means a more accurate predictor variable. This yields 2^2 = 8 total possible combinations. The *design* data would be of the following form:

line: The argument line corresponds to the performance statistic that is used to arrange the models in ascending or descending order, and to produce the line output in the bottom of the model series plot. For example, it can be a series of values of adjusted coefficient of determination, one for each model:

adj_r2 <- c(0.87, 0.74, 0.81, 0.85, 0.54, 0.86, 0.90, 0.89)

arrange: The argument arrange automatically arranges the model series according to the performance statistics selected with argument line. If obj is a data. frame returned by stats $MS()$, then the function uses standard arranging approaches. For most performance statistics, the models are arranged in descending order. The exception is when "r2", "adj_r2", or "ADJ_r2" are used, in which case the models are arranged in ascending order. This means that the model with lowest value appears in the leftmost side of the model series plot, while the models with the highest value appears in the rightmost side of the plot.

This results suggest that the best performing model is that of $id = 7$, while the model of $id = 5$ is the poorest one.

ind: The model series plot allows to see how the design influences model performance. This is achieved mainly through the use of different colors in the grid output, where each unique value in the *design* data is represented by a different color. For the example given above, one could try to see if the models built with the more accurate versions of the predictor variables have a better performance by identifying their relative distribution in the model series plot. The models placed at the rightmost side of the plot are those with the best performance.

The argument ind provides another tool to help identifying how the design, more specifically how each variable in the *design* data, influences model performance. This is done by simply calculating the mean ranking of the models that were built using the updated version of each predictor variable. This very same mean ranking is also used to rank the predictor variables and thus identify which of them is the most important.

After arranging the design data described above using the adjusted coefficient of determination, the following mean rank is obtained for each predictor variable:

> rank_center a b c 1 5.75 6.25 5.25

This result suggests that the best model performance is obtained when using the updated version of the predictor variable b. In the model series plot, the predictor variable b appears in the top row, while the predictor variable c appears in the bottom row.

Value

An object of class "trellis" consisting of a model series plot.

plotModelSeries 27

Dependencies

The **grDevices** package, provider of graphics devices and support for colours and fonts in R, is required for [plotModelSeries\(\)](#page-22-1) to work.

The grid package, a rewrite of the graphics layout capabilities in R, is required for [plotModelSeries\(\)](#page-22-1) to work.

Warning

Use the original functions [lattice::xyplot\(\)](#page-0-0) and [lattice::levelplot\(\)](#page-0-0) for higher customization.

Note

Some of the solutions used to build this function were found in the source code of the R-package mvtsplot. As such, the author of that package, Roger D. Peng <rpeng@jhsph.edu>, is entitled 'contributors' to the R-package pedometrics.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Deepayan Sarkar (2008). *Lattice: Multivariate Data Visualization with R.* Springer, New York. ISBN 978-0-387-75968-5.

Roger D. Peng (2008). *A method for visualizing multivariate time series data.* Journal of Statistical Software. v. 25 (Code Snippet), p. 1-17.

Roger D. Peng (2012). *mvtsplot: Multivariate Time Series Plot.* R package version 1.0-1. [https:](https://CRAN.R-project.org/package=mvtsplot) [//CRAN.R-project.org/package=mvtsplot](https://CRAN.R-project.org/package=mvtsplot).

A. Samuel-Rosa, G. B. M. Heuvelink, G. de Mattos Vasques, and L. H. C. dos Anjos, Do more detailed environmental covariates deliver more accurate soil maps?, *Geoderma*, vol. 243–244, pp. 214–227, May 2015, doi: 10.1016/j.geoderma.2014.12.017.

See Also

[lattice::xyplot\(\)](#page-0-0) [lattice::levelplot\(\)](#page-0-0)

```
if (all(require(grDevices), require(grid))) {
 # This example follows the discussion in section "Details"
 # Note that the data.frame is created manually
 id \leq c(1:8)design \le data.frame(a = c(0, 0, 1, 0, 1, 0, 1, 1),
                       b = c(0, 0, 0, 1, 0, 1, 1, 1),
                       c = c(0, 1, 0, 0, 1, 1, 0, 1))adj_r2 <- c(0.87, 0.74, 0.81, 0.85, 0.54, 0.86, 0.90, 0.89)
 obj <- cbind(id, design, adj_r2)
 p \leftarrow plotModelSeries(obj, grid = c(2:4), line = "adj_r2", ind = 1,
```

```
color = c("lightyellow", "palegreen"),
main = "Model Series Plot")
```
rowMinCpp *Return the minimum value in each row of a numeric matrix*

Description

This function returns the minimum value in each row of a numeric matrix.

Usage

rowMinCpp(x)

Arguments

x Numeric matrix with two or more rows and/or columns.

Details

This function is implemented in C++ to speed-up the computation time for large matrices.

Value

A numeric vector with the minimum value of each row if the matrix.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

See Also

rowMins() in <https://cran.r-project.org/package=matrixStats>.

Examples

```
x \le - matrix(rnorm(20), nrow = 5)
rowMinCpp(x)
```
}

Description

Compute the moment coefficient of skewness of a continuous, possibly non-normal variable.

Usage

skewness(x)

Arguments

x Numeric vector, the values of the variable of interest.

Value

A numerical value: the moment coefficient of skewness of x.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

B. S. Everitt, *The Cambridge Dictionary of Statistics*, 3rd ed. Cambridge: Cambridge University Press, 2006, p. 432.

D. N. Joanes and C. A. Gill, Comparing measures of sample skewness and kurtosis, *J Royal Statistical Soc D*, vol. 47, no. 1, pp. 183–189, Mar. 1998, doi: 10.1111/1467-9884.00122.

H. Cramér, *Mathematical Methods of Statistics*. Princeton: Princeton University Press, 1946, p. 575.

```
x \leftarrow \text{rlnorm}(10)skw <- skewness(x)
```


Description

Compute several statistics measuring the performance of a series of linear models built using [buildModelSeries\(\)](#page-4-1), with an option to rank the models based on one of the returned performance statistics.

Usage

statsModelSeries(model, design.info, arrange.by, digits) statsMS(model, design.info, arrange.by, digits)

Arguments

Details

This function was devised to deal with a list of linear models generated by the function [buildModelSeries\(\)](#page-4-1). The main objective is to compare several linear models using several performance statistics. Such statistics can then be used to rank the linear models and identify, for example, the best performing model, given the selected performance statistics.

An important feature of [buildModelSeries\(\)](#page-4-1) is that it uses the information about the initial number of candidate predictor variables offered to the build the model to calculate penalized or adjusted measures of model performance. Such information is recorded as an attribute of the final model selected by [buildModelSeries\(\)](#page-4-1). This feature was included in [statsModelSeries\(\)](#page-29-1) because data-driven variable selection results biased linear models (too optimistic), and the effective number of degrees of freedom is close to the number of candidate predictor variables initially offered to the model (Harrell, 2001).

Value

A data frame with several performance statistics:

- id Identification of the model.
- candidates Number of candidate predictor variables initially offered to the model.
- df Number of degrees of freedom of the final selected model.
- aic Akaike's Information Criterion (AIC). Obtained using extractAIC.
- rmse Root-mean squared error, calculated based on the number of candidate predictor variables initially offered to the model.
- nrmse Normalized Root-mean squared error, calculated as the ratio between the RMSE and the standard deviation of the observed values of the dependent variable.
- r2 Multiple coefficient of determination.
- adj_r2 Adjusted multiple coefficient of determination.
- ADJ r2 Adjusted multiple coefficient of determination. Calculations are done based on the number of candidate predictor variables initially offered to the model.

TODO

- Include other performance statistics such as: PRESS, BIC, Mallow's Cp, max(VIF);
- Add option to select which performance statistics should be returned.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Harrell, F. E. (2001) *Regression modelling strategies: with applications to linear models, logistic regression, and survival analysis.* First edition. New York: Springer.

Venables, W. N. and Ripley, B. D. (2002) *Modern applied statistics with S.* Fourth edition. New York: Springer.

A. Samuel-Rosa, G. B. M. Heuvelink, G. de Mattos Vasques, and L. H. C. dos Anjos, Do more detailed environmental covariates deliver more accurate soil maps?, *Geoderma*, vol. 243–244, pp. 214–227, May 2015, doi: 10.1016/j.geoderma.2014.12.017.

See Also

[buildModelSeries\(\)](#page-4-1), [plotModelSeries\(\)](#page-22-1)

```
if (interactive()) {
 # based on the second example of function MASS:stepAIC()
 require(MASS)
 cpus1 <- cpus
 for(v in names(cpus)[2:7])
```

```
cpus1[[v]] <- cut(cpus[[v]], unique(quantile(cpus[[v]])),
                    include.lowest = TRUE)
cpus0 <- cpus1[, 2:8] # excludes names, authors' predictions
cpus.samp <- sample(1:209, 100)
cpus.form <- list(formula(log10(perf) ~ syct + mmin + mmax + cach + chmin +
                  chmax + perf),
                  formula(log10(perf) \sim syct + mmin + cach + chmin + chmax),
                  formula(log10(perf) \sim mmax + cach + chmin + chmax + perf))
data <- cpus1[cpus.samp,2:8]
cpus.ms <- buildModelSeries(cpus.form, data, vif = TRUE, aic = TRUE)
cpus.des <- data.frame(a = c(0, 1, 0), b = c(1, 0, 1), c = c(1, 1, 0))
stats <- statsModelSeries(cpus.ms, design.info = cpus.des, arrange.by = "aic")
```


Description

}

This function takes a linear model and selects the subset of predictor variables that meet a userspecific collinearity threshold measured by the (generalized) variance-inflation factor (VIF).

Usage

stepVIF(model, threshold = 10, verbose = FALSE)

Arguments

Details

stepVIF starts computing the VIF of all predictor variables in the linear model. If the linear model contains categorical predictor variables, generalized variance-inflation factors (GVIF) (Fox and Monette, 1992), are calculated instead using $car:$: v if(). GVIF is interpretable as the inflation in size of the confidence ellipse or ellipsoid for the coefficients of the predictor variable in comparison with what would be obtained for orthogonal, uncorrelated data. Since categorical predictors have more than one degree of freedom, *df*, the confidence ellipsoid will have *df* dimensions, and GVIF will need to be adjusted so that it can be comparable across predictor variables. The adjustment is made using the following equation:

 $GVIF^{1/(2\times df)}$

stepVIF 33

The next step consists of evaluating if any of the predictor variables has a (G)VIF larger than the specified threshold, the function default being threshold = 10. For, $GVIF^{\wedge}(1/(2*df))$, the threshold will be sqrt(threshold).

If there is only one predictor variable that does not meet the VIF threshold, it is automatically removed from the model and no further processing occurs. When there are two or more predictor variables that do not meet the (G)VIF threshold, [stepVIF\(\)](#page-31-1) fits a linear model between each of them and the dependent variable. The predictor variable with the lowest adjusted coefficient of determination is dropped from the model and new coefficients are calculated, resulting in a new linear model.

This process lasts until all predictor variables included in the new model meet the (G)VIF threshold.

Nothing is done if all predictor variables have a (G)VIF value lower that the threshold, and [stepVIF\(\)](#page-31-1) returns the original linear model.

Value

A linear model (object of class 'lm') with low collinearity.

Dependencies

The car package, provider of functions to accompany Fox and Weisberg's An R Companion to Applied Regression, is required for [plotHist\(\)](#page-20-2) to work. The development version of the car package is available on <https://r-forge.r-project.org/projects/car/> while its old versions are available on the CRAN archive at [https://cran.r-project.org/src/contrib/Archive/](https://cran.r-project.org/src/contrib/Archive/car/) [car/](https://cran.r-project.org/src/contrib/Archive/car/).

Note

More on the use of GVIF to measure the collinearity in linear models containing categorical predictor variables can be found on [StackExchange.](https://stats.stackexchange.com/questions/70679/)

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Fox, J. and Monette, G. (1992) Generalized collinearity diagnostics. *JASA*, 87, 178–183.

Fox, J. (2008) *Applied Regression Analysis and Generalized Linear Models*, Second Edition. Sage.

Fox, J. and Weisberg, S. (2011) *An R Companion to Applied Regression*, Second Edition. Thousand Oaks: Sage.

Hair, J. F., Black, B., Babin, B. and Anderson, R. E. (2010) *Multivariate data analysis*. New Jersey: Pearson Prentice Hall.

Venables, W. N. and Ripley, B. D. (2002) *Modern Applied Statistics with S*. Fourth edition. Springer.

A. Samuel-Rosa, G. B. M. Heuvelink, G. de Mattos Vasques, and L. H. C. dos Anjos, Do more detailed environmental covariates deliver more accurate soil maps?, *Geoderma*, vol. 243–244, pp. 214–227, May 2015, doi: 10.1016/j.geoderma.2014.12.017.

See Also

[MASS::stepAIC\(\)](#page-0-0)

Examples

```
if (require(car)) {
  fit \leq - lm(prestige \sim income + education + type, data = Duncan)
  fit <- stepVIF(fit, threshold = 10, verbose = TRUE)
}
```
variogramBins *Variogram binning*

Description

Computation of bins for sample (experimental) variograms.

Usage

```
variogramBins(
 coords,
 n.\text{lags} = 7,type = "exp",
 cutoff = 0.5,
 base = 2,
 zero = 0.001,
  count = "pairs")
vgmLags(
 coords,
 n.\text{lags} = 7,
 type = "exp",
  cutoff = 0.5,
 base = 2,
 zero = 0.001,count = "pairs"
```
)

Arguments

variogramBins 35

Value

Vector of numeric values with the lower and upper boundaries of the variogram bins. The number of points or point-pairs per variogram bin is returned as an attribute.

Dependencies

The SpatialTools package, provider of tools for spatial data analysis in R , is required for [variogramBins\(\)](#page-33-1) to work. The development version of the **SpatialTools** package is available on [https://github.](https://github.com/jfrench/SpatialTools) [com/jfrench/SpatialTools](https://github.com/jfrench/SpatialTools) while its old versions are available on the CRAN archive at [https:](https://cran.r-project.org/src/contrib/Archive/SpatialTools/) [//cran.r-project.org/src/contrib/Archive/SpatialTools/](https://cran.r-project.org/src/contrib/Archive/SpatialTools/).

Reverse dependencies

The spsann package, provider of methods for the optimization of sample configurations using spatial simulated annealing in R, requires [variogramBins\(\)](#page-33-1) for some of its functions to work. The development version of the spsann package is available on [https://github.com/Laboratorio-de-P](https://github.com/Laboratorio-de-Pedometria/spsann-package)edometria/ [spsann-package](https://github.com/Laboratorio-de-Pedometria/spsann-package).

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Truong, P. N.; Heuvelink, G. B. M.; Gosling, J. P. Web-based tool for expert elicitation of the variogram. *Computers and Geosciences*. v. 51, p. 390-399, 2013.

```
if (all(c(require(SpatialTools), require(sp)))) {
 data(meuse, package = "sp")
 lags_points <- variogramBins(coords = meuse[, 1:2], count = "points")
 lags_pairs <- variogramBins(coords = meuse[, 1:2], count = "pairs")
}
```


Description

Guess the parameters of the spatial covariance function of a random, regionalized variable. A guess of such parameters is required to start the fitting functions of many geostatistical packages such as gstat, geoR, and georob.

Usage

```
variogramGuess(
  z,
  coords,
  lags,
  cutoff = 0.5,
 method = "a",min.npairs = 30,model = "matern",
 nu = 0.5,
  estimator = "qn",
 plotit = FALSE
\mathcal{L}vgmICP(
  z,
  coords,
 lags,
  cutoff = 0.5,
 method = "a",min.npairs = 30,
 model = "matern",
 nu = 0.5,
 estimator = "qn",
  plotit = FALSE
\mathcal{L}
```
Arguments

Details

There are five methods two guess the covariance parameters. Two of them, "a" and "c", rely on a sample variogram with exponentially growing variogram bins, while the other three, "b", "d", and "e", use equal-width variogram bins (see [variogramBins\(\)](#page-33-1)). All of them are [heuristic.](https://en.wikipedia.org/wiki/Heuristic)

Method "a" was developed in-house and is the most elaborated of them, specially for guessing the nugget variance.

Method "b" was proposed by [doi:10.1016/00983004\(95\)00095XJ](https://doi.org/10.1016/0098-3004%2895%2900095-X)ian et al. (1996) and is implemented in [SAS/STAT\(R\) 9.22.](https://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm#statug_variogram_a0000000593.htm)

Method "c" is implemented in the **automap-package and was developed by [doi:10.1016/j.cageo.2008.10.011H](https://doi.org/10.1016/j.cageo.2008.10.011)iemstra** et al. (2009).

Method "d" was developed by [doi:10.1007/s1100401294341D](https://doi.org/10.1007/s11004-012-9434-1)esassis & Renard (2012).

Method "e" was proposed by Larrondo et al. (2003) [http://www.ccgalberta.com/ccgresources](http://www.ccgalberta.com/ccgresources/report05/2003-122-varfit.pdf)/ [report05/2003-122-varfit.pdf](http://www.ccgalberta.com/ccgresources/report05/2003-122-varfit.pdf) and is implemented in the VARFIT module of GSLIB [http:](http://www.gslib.com/) [//www.gslib.com/](http://www.gslib.com/).

Value

A vector of numerical values, the guesses for the spatial covariance parameters of the regionalized variable:

• nugget

- • partial sill
- range

Dependencies

The **georob** package, provider of functions for the robust geostatistical analysis of spatial data in R, is required for [variogramGuess\(\)](#page-35-1) to work. The old versions of the **georob** package are available on the CRAN archive at <https://cran.r-project.org/src/contrib/Archive/georob/>.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Desassis, N. & Renard, D. Automatic variogram modelling by iterative least squares: univariate and multivariate cases. *Mathematical Geosciences*. Springer Science + Business Media, v. 45, p. 453-470, 2012.

Hiemstra, P. H.; Pebesma, E. J.; Twenhöfel, C. J. & Heuvelink, G. B. Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. *Computers & Geosciences*. Elsevier BV, v. 35, p. 1711-1721, 2009.

Jian, X.; Olea, R. A. & Yu, Y.-S. Semivariogram modelling by weighted least squares. *Computers & Geosciences*. Elsevier BV, v. 22, p. 387-397, 1996.

Larrondo, P. F.; Neufeld, C. T. & Deutsch, C. V. *VARFIT: a program for semi-automatic variogram modelling*. Edmonton: Department of Civil and Environmental Engineering, University of Alberta, p. 17, 2003.

See Also

```
variogramBins()
```
Examples

```
if (all(c(require(sp), require(georob)))) {
  data(meuse, package = "sp")
  icp \leftarrow \text{variogramsGuess}(z = \log(\text{meuse\xspace}), coords = meuse[, 1:2])
}
```
vgmSCV *Spatially correlated variance (SCV)*

Description

Compute the proportion of the variance that is spatially correlated.

 $vgmSCV$ 39

Usage

```
vgmSCV(obj, digits = 4)
## S3 method for class 'variomodel'
vgmSCV(obj, digits = 4)
## S3 method for class 'variogramModel'
vgmSCV(obj, digits = 4)
## S3 method for class 'georob'
vgmSCV(obj, digits = 4)
```
Arguments

Value

Numeric value indicating the proportion of the variance that is spatially correlated.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

See Also

[variogramBins\(\)](#page-33-1)

```
if (all(c(require(gstat), require(sp)))) {
 library(gstat)
 library(sp)
 data(meuse)
 sp::coordinates(meuse) <- ~ x + y
 vgm1 <- gstat::variogram(log(zinc) ~ 1, meuse)
 fit <- gstat::fit.variogram(vgm1, gstat::vgm(1, "Sph", 300, 1))
 res <- vgmSCV(fit)
}
```
Index

∗ hplot plotModelSeries, [23](#page-22-0) ∗ misc adjR2, [3](#page-2-0) bbox2sp, [4](#page-3-0) ∗ spatial bbox2sp, [4](#page-3-0) ∗ univar rowMinCpp, [28](#page-27-0) ∗ variogram variogramBins, [34](#page-33-0) variogramGuess, [36](#page-35-0) vgmSCV, [38](#page-37-0) adjR2, [3](#page-2-0) allFactor *(*isNumint*)*, [16](#page-15-0) allInteger *(*isNumint*)*, [16](#page-15-0) allNumeric *(*isNumint*)*, [16](#page-15-0) allNumint *(*isNumint*)*, [16](#page-15-0) anyFactor *(*isNumint*)*, [16](#page-15-0) anyInteger *(*isNumint*)*, [16](#page-15-0) anyNumeric *(*isNumint*)*, [16](#page-15-0) anyNumint *(*isNumint*)*, [16](#page-15-0) base::is.factor(), *[17](#page-16-0)* base::is.integer(), *[17](#page-16-0)* base::is.numeric(), *[17](#page-16-0)* bbox2sp, [4](#page-3-0) bbox2sp(), *[4](#page-3-0)* breakPoints *(*cont2cat*)*, [11](#page-10-0) breakPoints(), *[12](#page-11-0)* buildModelSeries, [5](#page-4-0) buildModelSeries(), *[6,](#page-5-0) [7](#page-6-0)*, *[23](#page-22-0)*, *[30,](#page-29-0) [31](#page-30-0)* buildMS *(*buildModelSeries*)*, [5](#page-4-0) car::bcPower(), *[22](#page-21-0)* car::powerTransform(), *[22](#page-21-0)* car::vif(), *[32](#page-31-0)*

```
cdfPlot (coordenadas), 13
cdfStats (coordenadas), 13
```
cdfTable *(*coordenadas*)*, [13](#page-12-0) checkGMU, [8](#page-7-0) cont2cat, [11](#page-10-0) cont2cat(), *[12](#page-11-0)* coordenadas, [13](#page-12-0) cramer, [14](#page-13-0) cramer(), *[14](#page-13-0)* fields::image.plot(), *[18](#page-17-0)* gcpDiff *(*coordenadas*)*, [13](#page-12-0) gcpVector, [15](#page-14-0) graphics::image(), *[18](#page-17-0)* graphics::points(), *[24](#page-23-0)* grDevices::cm.colors(), *[24](#page-23-0)* grid::grid.points(), *[24](#page-23-0)* gstat::variogram(), *[19,](#page-18-0) [20](#page-19-0)* isNumint, [16](#page-15-0) lattice::densityplot(), *[22,](#page-21-0) [23](#page-22-0)* lattice::histogram(), *[22,](#page-21-0) [23](#page-22-0)* lattice::levelplot(), *[24](#page-23-0)*, *[27](#page-26-0)* lattice::panel.mathdensity(), *[22,](#page-21-0) [23](#page-22-0)* lattice::panel.xyplot(), *[24](#page-23-0)* lattice::print.trellis(), *[22](#page-21-0)* lattice::update.trellis(), *[22](#page-21-0)* lattice::xyplot(), *[24](#page-23-0)*, *[27](#page-26-0)* MASS::stepAIC(), *[5](#page-4-0)[–7](#page-6-0)*, *[34](#page-33-0)* pedometrics *(*pedometrics-package*)*, [2](#page-1-0) pedometrics-package, [2](#page-1-0) plotCor, [17](#page-16-0) plotCor(), *[18](#page-17-0)* plotESDA, [19](#page-18-0) plotESDA(), *[20](#page-19-0)*

plotHD *(*plotHist*)*, [21](#page-20-0) plotHD(), *[20](#page-19-0)*, *[22](#page-21-0)* plotHist, [21](#page-20-0) plotHist(), *[22](#page-21-0)*, *[33](#page-32-0)*

INDEX 41

plotModelSeries , [23](#page-22-0) plotModelSeries() , *[27](#page-26-0)* , *[31](#page-30-0)* plotMS *(*plotModelSeries *)* , [23](#page-22-0) rowMinCpp , [28](#page-27-0) skewness , [29](#page-28-0) sp::bubble() , *[20](#page-19-0)* sp::spplot() , *[20](#page-19-0)* stats::lm() , *[5](#page-4-0)* statsModelSeries , [30](#page-29-0) statsModelSeries() , *[6](#page-5-0)* , *[30](#page-29-0)* statsMS *(*statsModelSeries *)* , [30](#page-29-0) statsMS() , *[7](#page-6-0)* , *[23](#page-22-0) [–26](#page-25-0)* stepVIF, [32](#page-31-0) stepVIF() , *[5](#page-4-0) – [7](#page-6-0)* , *[33](#page-32-0)* stratify *(*cont2cat *)* , [11](#page-10-0) stratify() , *[12](#page-11-0)* trend.matrix *(*coordenadas *)* , [13](#page-12-0) trend.terms *(*coordenadas *)* , [13](#page-12-0) uniqueClass *(*isNumint *)* , [16](#page-15-0) variogramBins , [34](#page-33-0) variogramBins() , *[35](#page-34-0) [–39](#page-38-0)* variogramGuess , [36](#page-35-0) variogramGuess() , *[38](#page-37-0)* vgmICP *(*variogramGuess *)* , [36](#page-35-0) vgmLags *(*variogramBins *)* , [34](#page-33-0) vgmSCV , [38](#page-37-0)

whichFactor *(*isNumint *)* , [16](#page-15-0) whichInteger *(*isNumint *)* , [16](#page-15-0) whichNumeric *(*isNumint *)* , [16](#page-15-0) whichNumint *(*isNumint *)* , [16](#page-15-0)