
Package: pedometrics (via r-universe)
September 13, 2024

Version 0.12.1

Date 2022-06-18

Title Miscellaneous Pedometric Tools

Description An R implementation of methods employed in the field of
pedometrics, soil science discipline dedicated to studying the
spatial, temporal, and spatio-temporal variation of soil using
statistical and computational methods. The methods found here
include the calibration of linear regression models using
covariate selection strategies, computation of summary
validation statistics for predictions, generation of summary
plots, evaluation of the local quality of a geostatistical
model of uncertainty, and so on. Other functions simply extend
the functionalities of or facilitate the usage of functions
from other packages that are commonly used for the analysis of
soil data. Formerly available versions of suggested packages no
longer available from CRAN can be obtained from the CRAN
archive <https://cran.r-project.org/src/contrib/Archive/>.

URL https://github.com/Laboratorio-de-Pedometria/pedometrics-package

BugReports https://github.com/Laboratorio-de-Pedometria/pedometrics-package/issues

Depends R (>= 3.2.0)

Imports lattice, latticeExtra, Rcpp (>= 0.12.0)

LinkingTo Rcpp

Suggests car, fields, georob, grDevices, grid, gstat, knitr, MASS,
methods, sp, SpatialTools

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.2.0

SystemRequirements pandoc

Roxygen list(markdown = TRUE)

Language en-US

1

https://cran.r-project.org/src/contrib/Archive/
https://github.com/Laboratorio-de-Pedometria/pedometrics-package
https://github.com/Laboratorio-de-Pedometria/pedometrics-package/issues

2 pedometrics-package

Repository https://laboratorio-de-pedometria.r-universe.dev

RemoteUrl https://github.com/laboratorio-de-pedometria/pedometrics-package

RemoteRef HEAD

RemoteSha d01fb5d6fa497799313a89f344695b43c4b7fdbd

Contents
pedometrics-package . 2
adjR2 . 3
bbox2sp . 4
buildModelSeries . 5
checkGMU . 8
cont2cat . 11
coordenadas . 13
cramer . 14
gcpVector . 15
isNumint . 16
plotCor . 17
plotESDA . 19
plotHist . 21
plotModelSeries . 23
rowMinCpp . 28
skewness . 29
statsModelSeries . 30
stepVIF . 32
variogramBins . 34
variogramGuess . 36
vgmSCV . 38

Index 40

pedometrics-package Pedometric Tools and Techniques

Description

This package contains many tools and techniques used in the field of pedometrics (see https://en.wikipedia.org/wiki/Pedometric_mapping
for a definition of pedometrics). These tools and techniques were developed to fulfill the demands
created by the PhD research project (2012-2016) entitled “Contribution to the Construction of Mod-
els for Predicting Soil Properties”, developed by Alessandro Samuel-Rosa under the supervision of
Dr Lúcia HC Anjos (Universidade Federal Rural do Rio de Janeiro, Brazil), Dr Gustavo M Vasques
(Embrapa Solos, Brazil), and Dr Gerard B M Heuvelink (ISRIC - World Soil Information, the
Netherlands). The project is/was funded by the CNPq Foundation (Process 140720/2012-0), Min-
istry of Science and Technology of Brazil, Brasília, DF, 70040-020, Brazil, phone +55 (61) 2022
6002, and the CAPES Foundation (Process ID BEX 11677/13-9), Ministry of Education of Brazil,
Brasília, DF, 70040-020, Brazil, phone: +55 (61) 2022 6210.

adjR2 3

Details

Several functions simply extend the functionalities of other functions commonly used for the anal-
ysis of pedometric data. It should be noted that changes are likely to occur quite often and the use
of this package as a dependency for other packages is strongly discouraged.

Author(s)

Author and Maintainer: Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>.

adjR2 Adjusted coefficient of determination

Description

Calculates the adjusted coefficient of determination of a multiple linear regression model.

Usage

adjR2(r2, n, p)

Arguments

r2 Numeric vector with the coefficient of determination to be adjusted.

n Numeric vector providing the number of observations used to fit the multiple
linear regression model.

p Numeric vector providing the number of parameters included in the multiple
linear regression model.

Value

A numeric vector with the adjusted coefficient of determination.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Coefficient of determination. Wikipedia, The Free Encyclopedia. Available at https://en.wikipedia.
org/wiki/Coefficient_of_determination.

Examples

x <- adjR2(r2 = 0.95, n = 100, p = 80)

https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Coefficient_of_determination

4 bbox2sp

bbox2sp Create a Spatial* object from a bounding box

Description

Take the bounding box of a Spatial* object and create a SpatialPoints* or SpatialPolygons* object
from it.

Usage

bbox2sp(obj, sp = "SpatialPolygons", keep.crs = TRUE)

Arguments

obj Object of class Spatial*.

sp Class of the resulting object with options "SpatialPolygons" (default), "SpatialPoints",
"SpatialPointsDataFrame", and "SpatialPolygonsDataFrame".

keep.crs Logical for assigning the same coordinate reference system to the resulting Spa-
tial* object. Defaults to keep.crs = TRUE.

Value

An object of class SpatialPoints* or SpatialPolygons*.

Dependencies

The sp package, provider of classes and methods for spatial data in R, is required for bbox2sp() to
work. The development version of the sp package is available on https://github.com/edzer/
sp/ while its old versions are available on the CRAN archive at https://cran.r-project.org/
src/contrib/Archive/sp/.

Note

Some of the solutions used to build this function were found in the source code of the R-package in-
tamapInteractive. As such, the authors of that package, Edzer Pebesma <edzer.pebesma@uni-muenster.de>
and Jon Skoien <jon.skoien@gmail.com>, are entitled ‘contributors’ to the R-package pedomet-
rics.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Edzer Pebesma, Jon Skoien with contributions from Olivier Baume, A. Chorti, D.T. Hristopulos,
S.J. Melles and G. Spiliopoulos (2013). intamapInteractive: procedures for automated interpola-
tion - methods only to be used interactively, not included in intamap package. R package version
1.1-10. https://CRAN.R-project.org/package=intamapInteractive.

https://github.com/edzer/sp/
https://github.com/edzer/sp/
https://cran.r-project.org/src/contrib/Archive/sp/
https://cran.r-project.org/src/contrib/Archive/sp/
https://CRAN.R-project.org/package=intamapInteractive

buildModelSeries 5

Examples

if (require(sp)) {
data(meuse, package = "sp")
sp::coordinates(meuse) <- ~ x + y
bb <- bbox2sp(obj = meuse, keep.crs = FALSE)

}

buildModelSeries Build a series of linear models using automated variable selection

Description

Build a series of linear models with stats::lm() using one or more automated variable selection
methods implemented in the functions stepVIF() and MASS::stepAIC().

Usage

buildModelSeries(
formula,
data,
vif = FALSE,
vif.threshold = 10,
vif.verbose = FALSE,
aic = FALSE,
aic.direction = "both",
aic.trace = FALSE,
aic.steps = 5000,
...

)

buildMS(
formula,
data,
vif = FALSE,
vif.threshold = 10,
vif.verbose = FALSE,
aic = FALSE,
aic.direction = "both",
aic.trace = FALSE,
aic.steps = 5000,
...

)

Arguments

formula A list containing one or several model formulas (a symbolic description of the
model to be fitted).

6 buildModelSeries

data Data frame containing the variables in the model formulas.

vif Logical for performing backward variable selection using the Variance-Inflation
Factor (VIF). Defaults to vif = FALSE.

vif.threshold Numeric value setting the maximum acceptable VIF value. Defaults to vif.threshold
= 10.

vif.verbose Logical for printing iteration results of backward variable selection using the
VIF. Defaults to vif.verbose = FALSE.

aic Logical for performing variable selection using Akaike’s Information Criterion
(AIC). Defaults to aic = FALSE.

aic.direction Character string setting the direction of variable selection when using AIC, with
options "both" (default), "forward", and "backward".

aic.trace Logical for printing iteration results of variable selection using the AIC. Defaults
to aic.trace = FALSE.

aic.steps Integer value setting the maximum number of steps to be considered for variable
selection using the AIC. Defaults to aic.steps = 5000.

... Further arguments passed to MASS::stepAIC().

Details

buildModelSeries() was devised to deal with a list of linear model formulas. The main objec-
tive is to bring together several functions commonly used when building linear models, such as
automated variable selection. In the current implementation, variable selection can be done using
stepVIF() or MASS::stepAIC() or both. stepVIF() is a backward variable selection procedure,
while MASS::stepAIC() supports backward, forward, and bidirectional variable selection. For
more information about these functions, please visit their respective help pages.

An important feature of buildModelSeries() is that it records the initial number of candidate
predictor variables and observations offered to the model, and adds this information as an at-
tribute to the final selected model. Such feature was included because variable selection proce-
dures result biased linear models (too optimistic), and the effective number of degrees of freedom
is close to the number of candidate predictor variables initially offered to the model (Harrell, 2001).
With the initial number of candidate predictor variables and observations offered to the model,
one can calculate penalized or adjusted measures of model performance. For models built using
buildModelSeries(), this can be done using statsModelSeries().

Some important details should be clear when using buildModelSeries():

• this function was originally devised to deal with a list of formulas, but can also be used with a
single formula;

• in the current implementation, stepVIF() runs before MASS::stepAIC();

• function arguments imported from MASS::stepAIC() and stepVIF() were named as in the
original functions, and received a prefix (aic or vif) to help the user identifying which func-
tion is affected by a given argument without having to go check the documentation.

Value

A list containing the fitted linear models.

buildModelSeries 7

TODO

Add option to set the order in which MASS::stepAIC() and stepVIF() are run.

Dependencies

The MASS package, provider of support functions and datasets for Venables and Ripley’s Modern
Applied Statistics with S, is required for buildModelSeries() to work. The development ver-
sion of the MASS package is available on https://www.stats.ox.ac.uk/pub/MASS4/ while its
old versions are available on the CRAN archive at https://cran.r-project.org/src/contrib/
Archive/MASS/.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Harrell, F. E. (2001) Regression modelling strategies: with applications to linear models, logistic
regression, and survival analysis. First edition. New York: Springer.

Venables, W. N. and Ripley, B. D. (2002) Modern applied statistics with S. Fourth edition. New
York: Springer.

A. Samuel-Rosa, G. B. M. Heuvelink, G. de Mattos Vasques, and L. H. C. dos Anjos, Do more
detailed environmental covariates deliver more accurate soil maps?, Geoderma, vol. 243–244, pp.
214–227, May 2015, doi: 10.1016/j.geoderma.2014.12.017.

See Also

stepVIF(), statsMS()

Examples

if (interactive()) {
based on the second example of MASS::stepAIC()
library("MASS")
cpus1 <- cpus
for(v in names(cpus)[2:7])
cpus1[[v]] <- cut(cpus[[v]], unique(stats::quantile(cpus[[v]])),

include.lowest = TRUE)
cpus0 <- cpus1[, 2:8] # excludes names, authors' predictions
cpus.samp <- sample(1:209, 100)
cpus.form <- list(formula(log10(perf) ~ syct + mmin + mmax + cach + chmin +

chmax + perf),
formula(log10(perf) ~ syct + mmin + cach + chmin + chmax),
formula(log10(perf) ~ mmax + cach + chmin + chmax + perf))

data <- cpus1[cpus.samp,2:8]
cpus.ms <- buildModelSeries(cpus.form, data, vif = TRUE, aic = TRUE)

}

https://www.stats.ox.ac.uk/pub/MASS4/
https://cran.r-project.org/src/contrib/Archive/MASS/
https://cran.r-project.org/src/contrib/Archive/MASS/

8 checkGMU

checkGMU Evaluation of geostatistical models of uncertainty

Description

Evaluate the local quality of a geostatistical model of uncertainty (GMU) using summary measures
and graphical displays.

Usage

checkGMU(
observed,
simulated,
pi = seq(0.01, 0.99, 0.01),
symmetric = TRUE,
plotit = TRUE

)

Arguments

observed Vector of observed values at the validation points. See ‘Details’ for more infor-
mation.

simulated Data frame or matrix with simulated values (columns) for each validation point
(rows). See ‘Details’ for more information.

pi Vector defining the width of the series of probability intervals. Defaults to pi =
seq(0.01, 0.99, 0.01). See ‘Details’ for more information.

symmetric Logical for choosing the type of probability interval. Defaults to symmetric =
TRUE. See ‘Details’ for more information.

plotit Logical for plotting the results. Defaults to plotit = TRUE.

Details

There is no standard way of evaluating the local quality of a GMU. The collection of summary
measures and graphical displays presented here is far from being comprehensive. A few definitions
are given bellow.

Error statistics: Error statistics measure how well the GMU predicts the measured values at the
validation points. Four error statistics are presented:

Mean error (ME) Measures the bias of the predictions of the GMU, being defined as the mean
of the differences between the average of the simulated values and the observed values, i.e.
the average of all simulations is taken as the predicted value.

Mean squared error (MSE) Measures the accuracy of the predictions of the GMU, being de-
fined as the mean of the squared differences between the average of the simulated values and
the observed values.

checkGMU 9

Scaled root mean squared error (SRMSE) Measures how well the GMU estimate of the pre-
diction error variance (PEV) approximates the observed prediction error variance, where the
first is given by the variance of the simulated values, while the second is given by the squared
differences between the average of the simulated values, i.e. the squared error (SE). The
SRMSE is computed as the average of SE / PEV, where SRMSE > 1 indicates underestima-
tion, while SRMSE < 1 indicates overestimation.

Pearson correlation coefficient Measures how close the GMU predictions are to the observed
values. A scatter plot of the observed values versus the average of the simulated values
can be used to check for possible unwanted outliers and non-linearities. The square of the
Pearson correlation coefficient measures the fraction of the overall spread of observed values
that is explained by the GMU, that is, the amount of variance explained (AVE), also known
as coefficient of determination or ratio of scatter.

Coverage probabilities: The coverage probability of an interval is given by the number of times
that that interval contains its parameter over several replications of an experiment. For example,
consider the interquartile range IQR = Q3 − Q1 of a Gaussian distributed variable with mean
equal to zero and variance equal to one. The nominal coverage probability of the IQR is 0.5, i.e.
two quarters of the data fall within the IQR. Suppose we generate a Gaussian distributed random
variable with the same mean and variance and count the number of values that fall within the IQR
defined above: about 0.5 of its values will fall within the IQR. If we continue generating Gaussian
distributed random variables with the same mean and variance, on average, 0.5 of the values will
fall in that interval.
Coverage probabilities are very useful to evaluate the local quality of a GMU: the closer the
observed coverage probabilities of a sequence of probability intervals (PI) are to the nominal
coverage probabilities of those PIs, the better the modeling of the local uncertainty.
Two types of PIs can be used here: symmetric, median-centered PIs, and left-bounded PIs. Papritz
& Dubois (1999) recommend using left-bounded PIs because they are better at evidencing devi-
ations for both large and small PIs. The authors also point that the coverage probabilities of the
symmetric, median-centered PIs can be read from the coverage probability plots produced using
left-bounded PIs.
In both cases, the PIs are computed at each validation location using the quantiles of the condi-
tional cumulative distribution function (ccdf) defined by the set of realizations at that validation
location. For a sequence of PIs of increasing width, we check which of them contains the ob-
served value at all validation locations. We then average the results over all validation locations to
compute the proportion of PIs (with the same width) that contains the observed value: this gives
the coverage probability of the PIs.
Deutsch (1997) proposed three summary measures of the coverage probabilities to assess the
local goodness of a GMU: accuracy (A), precision (P), and goodness (G). According to
Deutsch (1997), a GMU can be considered “good” if it is both accurate and precise. Although
easy to compute, these measures seem not to have been explored by many geostatisticians, except
for the studies developed by Pierre Goovaerts and his later software implementation (Goovaerts,
2009). Richmond (2001) suggests that they should not be used as the only measures of the local
quality of a GMU.

Accuracy An accurate GMU is that for which the proportion p∗ of true values falling within the
p PI is equal to or larger than the nominal probability p, that is, when p∗ ≥ p. In the
coverage probability plot, a GMU will be more accurate when all points are on or above the
1:1 line. The range of A goes from 0 (lest accurate) to 1 (most accurate).

10 checkGMU

Precision The precision, P, is defined only for an accurate GMU, and measures how close p∗

is to p. The range of P goes from 0 (lest precise) to 1 (most precise). Thus, a GMU will
be more accurate when all points in the PI-width plot are on or above the 1:1 line.

Goodness The goodness, G, is a measure of the departure of the points from the 1:1 line in the
coverage probability plot. G ranges from 0 (minimum goodness) to 1 (maximum good-
ness), the maximum G being achieved when p∗ = p, that is, all points in both coverage
probability and interval width plots are exactly on the 1:1 line.

It is worth noting that the coverage probability and PI-width plots are relevant mainly to GMU
created using conditional simulations, that is, simulations that are locally conditioned to the data
observed at the validation locations. Conditioning the simulations locally serves the purposes of
honoring the available data and reducing the variance of the output realizations. This is why one
would like to find the points falling above the 1:1 line in both coverage probability and PI-width
plots. For unconditional simulations, that is, simulations that are only globally conditioned to the
histogram (and variogram) of the data observed at the validation locations, one would expect to
find that, over a large number of simulations, the whole set of possible values (i.e. the global
histogram) can be generated at any node of the simulation grid. In other words, it is expected to
find all points on the 1:1 line in both coverage probability and PI-width plots. Deviations from
the 1:1 line could then be used as evidence of problems in the simulation.

Value

A list of summary measures and plots of the coverage probability and width of probability inter-
vals.

Note

Comments by Pierre Goovaerts <pierre.goovaerts@biomedware.com> were important to de-
scribe how to use the coverage probability and PI-width plots when a GMU is created using un-
conditional simulations.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Deutsch, C. Direct assessment of local accuracy and precision. Baafi, E. Y. & Schofield, N. A.
(Eds.) Geostatistics Wollongong ’96. Dordrecht: Kinwer Academic Publishers, v. I, p. 115-125,
1997.

Papritz, A. & Dubois, J. R. Mapping heavy metals in soil by (non-)linear kriging: an empirical
validation. Gómez-Hernández, J.; Soares, A. & Froidevaux, R. (Eds.) geoENV II – Geostatistics
for Environmental Applications. Springer, p. 429-440, 1999.

Goovaerts, P. Geostatistical modelling of uncertainty in soil science. Geoderma. v. 103, p. 3 - 26,
2001.

Goovaerts, P. AUTO-IK: a 2D indicator kriging program for the automated non-parametric model-
ing of local uncertainty in earth sciences. Computers & Geosciences. v. 35, p. 1255-1270, 2009.

Richmond, A. J. Maximum profitability with minimum risk and effort. Xie, H.; Wang, Y. & Jiang,
Y. (Eds.) Proceedings 29th APCOM. Lisse: A. A. Balkema, p. 45-50, 2001.

cont2cat 11

Ripley, B. D. Stochastic simulation. New York: John Wiley & Sons, p. 237, 1987.

Examples

if (interactive()) {
set.seed(2001)
observed <- round(rnorm(100), 3)
simulated <- t(
sapply(1:length(observed), function (i) round(rnorm(100), 3)))

resa <- checkGMU(observed, simulated, symmetric = T)
resb <- checkGMU(observed, simulated, symmetric = F)
resa$error; resb$error
resa$goodness; resb$goodness

}

cont2cat Categorize/stratify numerical variable(s)

Description

Create break points, compute strata proportions, and stratify numerical variable(s) to create cate-
gorical variable(s).

Usage

cont2cat(x, breaks, integer = FALSE)

breakPoints(x, n, type = "area", prop = FALSE)

stratify(x, n, type = "area", integer = FALSE)

Arguments

x Vector, data frame or matrix with data on the numerical variable(s) to be cate-
gorized/stratified.

breaks Vector or list containing the lower and upper limits that should be used to break
the numerical variable(s) into categories. See ‘Details’ for more information.

integer Logical value indicating if the categorical variable(s) should be returned as
integers. Defaults to integer = FALSE, i.e. the variable(s) will be returned
as factors.

n Integer value indicating the number of categories/strata that should be created.

type Character value indicating the type of categories/strata that should be used, with
options "area" (default), for equal-area, and "range", for equal-range strata.

prop Logical value indicating if the strata proportions should be returned? Defaults
to prop = FALSE.

12 cont2cat

Details

Argument breaks must be a vector if x is a vector, but a list if x is a data frame or matrix. Using a
list allows breaking each column of x into different number of categories.

Value

A vector, data frame, or matrix, depending on the class of x.

Dependencies

The SpatialTools package, provider of tools for spatial data analysis in R, is required for breakPoints()
and stratify() to work. The development version of the SpatialTools package is available on
https://github.com/jfrench/SpatialTools while its old versions are available on the CRAN
archive at https://cran.r-project.org/src/contrib/Archive/SpatialTools/.

Reverse dependencies

The spsann package, provider of methods for the optimization of sample configurations using spa-
tial simulated annealing in R, requires breakPoints(), cont2cat() and stratify() for some
of its functions to work. The development version of the spsann package is available on https:
//github.com/Laboratorio-de-Pedometria/spsann-package.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

B. Minasny and A. B. McBratney. A conditioned Latin hypercube method for sampling in the
presence of ancillary information. Computers & Geosciences, vol. 32, no. 9, pp. 1378–1388, Nov.
2006, doi: 10.1016/j.cageo.2005.12.009.

T. Hengl, D. G. Rossiter, and A. Stein. Soil sampling strategies for spatial prediction by correlation
with auxiliary maps. Australian Journal of Soil Research, vol. 41, no. 8, pp. 1403–1422, 2003, doi:
10.1071/SR03005.

Examples

if (require(SpatialTools)) {
Compute the break points of marginal strata
x <- data.frame(x = round(rnorm(10), 1), y = round(rlnorm(10), 1))
x <- breakPoints(x = x, n = 4, type = "area", prop = TRUE)

Convert numerical data into categorical data
Matrix
x <- y <- c(1:10)
x <- cbind(x, y)
breaks <- list(c(1, 2, 4, 8, 10), c(1, 5, 10))
y <- cont2cat(x, breaks)

Data frame

https://github.com/jfrench/SpatialTools
https://cran.r-project.org/src/contrib/Archive/SpatialTools/
https://github.com/Laboratorio-de-Pedometria/spsann-package
https://github.com/Laboratorio-de-Pedometria/spsann-package

coordenadas 13

x <- y <- c(1:10)
x <- data.frame(x, y)
breaks <- list(c(1, 2, 4, 8, 10), c(1, 5, 10))
y <- cont2cat(x, breaks, integer = TRUE)

Vector
x <- c(1:10)
breaks <- c(1, 2, 4, 8, 10)
y <- cont2cat(x, breaks, integer = TRUE)

Stratification
x <- data.frame(x = round(rlnorm(10), 1), y = round(rnorm(10), 1))
x <- stratify(x = x, n = 4, type = "area", integer = TRUE)
x

}

coordenadas Defunct functions

Description

The functions listed here are no longer part of the pedometrics package. If you need to use any
of these functions, you can still find them at https://github.com/samuel-rosa/ASRtools or
https://cran.r-project.org/src/contrib/Archive/pedometrics/.

Usage

coordenadas(...)

cdfPlot(...)

cdfStats(...)

cdfTable(...)

gcpDiff(...)

trend.terms(...)

trend.matrix(...)

Arguments

... Not used.

Value

No return value, called for side effects.

https://github.com/samuel-rosa/ASRtools
https://cran.r-project.org/src/contrib/Archive/pedometrics/

14 cramer

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>
Tony Olsen <Olsen.Tony@epa.gov>
Tom Kincaid <Kincaid.Tom@epa.gov>

cramer Association between categorical variables

Description

Compute the Cramer’s V, a descriptive statistic that measures the association between categorical
variables.

Usage

cramer(x)

Arguments

x Data frame or matrix with a set of categorical variables.

Details

Any integer variable is internally converted to a factor.

Value

A matrix with the Cramer’s V between the categorical variables.

Reverse dependencies

The spsann package, provider of methods for the optimization of sample configurations using spa-
tial simulated annealing in R, requires cramer() for some of its functions to work. The development
version of the spsann package is available on https://github.com/Laboratorio-de-Pedometria/
spsann-package.

Note

The original code is available at https://sas-and-r.blogspot.com/, Example 8.39: calcu-
lating Cramer’s V, posted by Ken Kleinman on Friday, June 3, 2011. As such, Ken Kleinman
<Ken_Kleinman@hms.harvard.edu> is entitled a ‘contributor’ to the R-package pedometrics.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

https://github.com/Laboratorio-de-Pedometria/spsann-package
https://github.com/Laboratorio-de-Pedometria/spsann-package
https://sas-and-r.blogspot.com/

gcpVector 15

References

Cramér, H. Mathematical methods of statistics. Princeton: Princeton University Press, p. 575,
1946.

Everitt, B. S. The Cambridge dictionary of statistics. Cambridge: Cambridge University Press, p.
432, 2006.

Examples

if (interactive()) {
data(meuse, package = "sp")
str(meuse)
test <- cramer(meuse[, c("ffreq", "soil", "lime", "landuse")])

}

gcpVector Calculate module and azimuth

Description

Calculate the module and azimuth of the difference on x and y coordinates between two sets of
ground control points (GCP). It is suited to perform calculations for topographical coordinates only.
The origin is set in the y coordinate, and rotation performed clockwise.

Usage

gcpVector(dx, dy)

Arguments

dx Numeric vector containing the difference on the ‘x’ coordinate between two sets
of GCP.

dy Numeric vector containing the difference on the ‘y’ coordinate between two sets
of GCP.

Value

A data frame containing the module, its square and azimuth. These three columns are named
‘module’, ‘sq.module’ and ‘azimuth’.

Note

This function was adapted from package’s VecStatGraphs2D function LoadData().

Author(s)

Juan Carlos Ruiz Cuetos <bilba_t@hotmail.com>
Maria Eugenia Polo Garcia <mepolo@unex.es>
Pablo Garcia Rodriguez <pablogr@unex.es>
Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

16 isNumint

References

Ruiz-Cuetos J.C., Polo M.E. and Rodriguez P.G. (2012). VecStatGraphs2D: Vector analysis using
graphical and analytical methods in 2D. R package version 1.6. https://CRAN.R-project.org/
package=VecStatGraphs2D.

Examples

x <- gcpVector(dx = rnorm(3, 5, 10), dy = rnorm(3, 5, 10))

isNumint Tests for data types

Description

Evaluate the data type contained in an object.

Usage

isNumint(x)

allNumint(x)

anyNumint(x)

whichNumint(x)

allInteger(x)

anyInteger(x)

whichInteger(x)

allFactor(x)

anyFactor(x)

whichFactor(x)

allNumeric(x)

anyNumeric(x)

whichNumeric(x)

uniqueClass(x)

https://CRAN.R-project.org/package=VecStatGraphs2D
https://CRAN.R-project.org/package=VecStatGraphs2D

plotCor 17

Arguments

x Object to be tested.

Value

TRUE or FALSE depending on whether x contains a given data type.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

See Also

base::is.numeric(), base::is.integer(), base::is.factor().

Examples

Vector of integers
x <- 1:10
isNumint(x) # FALSE

Vector of numeric integers
x <- as.numeric(x)
isNumint(x) # TRUE

Vector of numeric values
x <- c(1.1, 1, 1, 1, 2)
isNumint(x) # FALSE
allNumint(x) # FALSE
anyNumint(x) # TRUE
whichNumint(x)

Single numeric integer
isNumint(1) # TRUE

Single numeric value
isNumint(1.1) # FALSE

plotCor Correlation plot

Description

Plotting correlation matrices.

Usage

plotCor(r, r2, col, breaks, col.names, ...)

18 plotCor

Arguments

r A square matrix with correlation values.

r2 (optional) A second square matrix with correlation values.

col (optional) Color table to use for image – see graphics::image() for details.
The default is a colorblind-friendly palette created using the RColorBrewer
palette "RdBu".

breaks (optional) Break points in sorted order to indicate the intervals for assigning the
colors. See fields::image.plot() for more details.

col.names (optional) Character vector with short (up to 5 characters) column names.

... (optional) Additional parameters passed to plotting functions.

Details

A correlation plot in an alternative way of showing the strength of the empirical correlations be-
tween variables. This is done by using a diverging color palette, where the darker the color, the
stronger the absolute correlation value.

plotCor() can also be used to compare correlations between the same variables at different points
in time or space or for different observations. This is done by passing two square correlation ma-
trices using arguments r and r2. The lower triangle of the resulting correlation plot will contain
correlations from r, correlations from r2 will be in the upper triangle, and the diagonal will be
empty.

Value

A correlation plot.

Dependencies

The fields package, provider of tools for spatial data in R, is required for plotCor() to work.
The development version of the fields package is available on https://github.com/dnychka/
fieldsRPackage while its old versions are available on the CRAN archive at https://cran.
r-project.org/src/contrib/Archive/fields/.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Neuwirth E (2022). RColorBrewer: ColorBrewer Palettes. R package version 1.1-3, https://
CRAN.R-project.org/package=RColorBrewer.

Examples

if (all(c(require(sp), require(fields)))) {
data(meuse, package = "sp")
cols <- c("cadmium", "copper", "lead", "zinc", "elev", "dist", "om")

https://github.com/dnychka/fieldsRPackage
https://github.com/dnychka/fieldsRPackage
https://cran.r-project.org/src/contrib/Archive/fields/
https://cran.r-project.org/src/contrib/Archive/fields/
https://CRAN.R-project.org/package=RColorBrewer
https://CRAN.R-project.org/package=RColorBrewer

plotESDA 19

A single correlation matrix
r <- cor(meuse[1:20, cols], use = "complete")
r <- round(r, 2)
plotCor(r)

Two correlation matrices: r2 goes in the upper triangle
r2 <- cor(meuse[21:40, cols], use = "complete")
r2 <- round(r2, 2)
plotCor(r, r2)

}

plotESDA Plots for exploratory spatial data analysis (ESDA)

Description

Create four plots for exploratory spatial data analysis (ESDA): histogram + density plot, bubble
plot, variogram plot, and variogram map.

Usage

plotESDA(
z,
lat,
lon,
lags = NULL,
cutoff = NULL,
width = c(cutoff/20),
leg.pos = "right"

)

Arguments

z Vector of numeric values of the variable for with ESDA plots should be created.
lat Vector of numeric values containing the y coordinate (latitude) of the point lo-

cations where the z variable was observed.
lon Vector of numeric values containing the x coordinate (longitude) of the point

locations where the z variable was observed.
lags (optional) Numerical vector; upper boundaries of lag-distance classes. See ar-

gument boundaries of gstat::variogram() for more info.
cutoff (optional) Integer value defining the spatial separation distance up to which point

pairs are included in semi-variance estimates. Defaults to the length of the diag-
onal of the box spanning the data divided by three.

width Integer value specifying the width of subsequent distance intervals into which
data point pairs are grouped for semi-variance estimates. Defaults to width =
cutoff / 20.

leg.pos (optional) Character value indication the location of the legend of the bubble
plot. Defaults to leg.pos = "right".

20 plotESDA

Details

The user should visit the help pages of gstat::variogram(), plotHD(), sp::bubble() and
sp::spplot() to obtain more details about the main functions used to built plotESDA().

Value

Four plots: histogram and density plot, bubble plot, empirical variogram, and variogram map.

Dependencies

The sp package, provider of classes and methods for spatial data in R, is required for plotESDA()
to work. The development version of the sp package is available on https://github.com/edzer/
sp/ while its old versions are available on the CRAN archive at https://cran.r-project.org/
src/contrib/Archive/sp/.

The gstat package, provider of methods for spatial and spatio-temporal geostatistical modelling,
prediction and simulation in R, is required for plotESDA() to work. The development version
of the sp package is available on https://github.com/r-spatial/gstat while its old versions
are available on the CRAN archive at https://cran.r-project.org/src/contrib/Archive/
gstat/.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Cressie, N.A.C. (1993) Statistics for Spatial Data. New York: John Wiley and Sons, p.900, 1993.

Pebesma, E.J. (2004) Multivariable geostatistics in S: the gstat package. Computers and Geo-
sciences, 30:683-691, 2004.

Webster, R., Oliver, M.A. Geostatistics for environmental scientists. Chichester: John Wiley and
Sons, p.315, 2007.

See Also

plotHD()

Examples

if (all(require(sp), require(gstat))) {
data(meuse, package = "sp")
p <- plotESDA(z = meuse$zinc, lat = meuse$y, lon = meuse$x)

}

https://github.com/edzer/sp/
https://github.com/edzer/sp/
https://cran.r-project.org/src/contrib/Archive/sp/
https://cran.r-project.org/src/contrib/Archive/sp/
https://github.com/r-spatial/gstat
https://cran.r-project.org/src/contrib/Archive/gstat/
https://cran.r-project.org/src/contrib/Archive/gstat/

plotHist 21

plotHist Histogram and density plot

Description

Plot a histogram and a density plot of a single variable using the R-package lattice.

Usage

plotHist(
x,
HD = "over",
nint = 20,
digits = 2,
stats = TRUE,
BoxCox = FALSE,
col = c("lightgray", "black"),
lwd = c(1, 1),
lty = "dashed",
xlim,
ylim,
...

)

plotHD(
x,
HD = "over",
nint = 20,
digits = 2,
stats = TRUE,
BoxCox = FALSE,
col = c("lightgray", "black"),
lwd = c(1, 1),
lty = "dashed",
xlim,
ylim,
...

)

Arguments

x Vector of numeric values of the variable for which the histogram and density
plot should be created.

HD Character value indicating the type of plot to be created. Available options are
"over", to create a histogram superimposed by the theoretical density plot of a
normally distributed variable, and "stack", to create a histogram and an empir-
ical density plot in separated panels. Defaults to HD = "over".

22 plotHist

nint Integer specifying the number of histogram bins. Defaults to nint = 20.
digits Integer indicating the number of decimal places to be used when printing the

statistics of the variable x. Defaults to digits = 2.
stats Logical to indicate if descriptive statistics of the variable x should be added to

the plot. Available only when HD = "over". The function tries to automatically
find the best location to put the descriptive statistics given the shape of the his-
togram. Defaults to stats = TRUE.

BoxCox Logical to indicate if the variable x should be transformed using the Box-Cox
family of power transformations. The estimated lambda value of the Box-Cox
transform is printed in the console. It is set to zero when negative. Defaults to
BoxCox = FALSE.

col Vector of two elements, the first indicating the color of the histogram, the sec-
ond indicating the color of the density plot. Defaults to col = c("lightgray",
"black").

lwd Vector of two elements, the first indicating the line width of the histogram, the
second indicating the line width of the density plot. Defaults to lwd = c(1, 1).

lty Character value indicating the line type for the density plot. Defaults to lty =
"dashed".

xlim Vector of two elements defining the limits of the x axis. The function automati-
cally optimizes xlim based on the density plot.

ylim Vector of two elements defining the limits of the y axis. The function automati-
cally optimizes ylim based both histogram and density plot.

... Other arguments that can be passed to lattice functions. There is no guarantee
that they will work.

Details

The user should visit the help pages of lattice::histogram(), lattice::densityplot(), lattice::panel.mathdensity(),
car::powerTransform(), and car::bcPower() to obtain more details about the main functions
used to built plotHD().

Value

An object of class "trellis". The lattice::update.trellis() method can be used to update
components of the object and the lattice::print.trellis() print method (usually called by
default) will plot it on an appropriate plotting device.

Dependencies

The car package, provider of functions to accompany Fox and Weisberg’s An R Companion to
Applied Regression, is required for plotHist() to work. The development version of the car
package is available on https://r-forge.r-project.org/projects/car/ while its old versions
are available on the CRAN archive at https://cran.r-project.org/src/contrib/Archive/
car/.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

https://r-forge.r-project.org/projects/car/
https://cran.r-project.org/src/contrib/Archive/car/
https://cran.r-project.org/src/contrib/Archive/car/

plotModelSeries 23

References

Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R, Springer. http://
lmdvr.r-forge.r-project.org/

See Also

lattice::histogram(), lattice::densityplot(), lattice::panel.mathdensity()

Examples

if (all(c(require(car), require(lattice), require(latticeExtra)))) {
x <- rnorm(100, 10, 2)
p1 <- plotHist(x, HD = "stack")
p2 <- plotHist(x, HD = "over")

}

plotModelSeries Model series plot

Description

Produce a graphical output to examine the effect of using different model specifications (design)
on the predictive performance of these models (a model series). Devised to access the results of
buildModelSeries() and statsMS(), but can be easily adapted to work with any model structure
and performance measure.

Usage

plotModelSeries(
obj,
grid,
line,
ind,
type = c("b", "g"),
pch = c(20, 2),
size = 0.5,
arrange = "desc",
color = NULL,
xlim = NULL,
ylab = NULL,
xlab = NULL,
at = NULL,
...

)

plotMS(
obj,

http://lmdvr.r-forge.r-project.org/
http://lmdvr.r-forge.r-project.org/

24 plotModelSeries

grid,
line,
ind,
type = c("b", "g"),
pch = c(20, 2),
size = 0.5,
arrange = "desc",
color = NULL,
xlim = NULL,
ylab = NULL,
xlab = NULL,
at = NULL,
...

)

Arguments

obj Object of class data.frame, generally returned by statsMS(), containing:
1. a series of performance statistics of several models, and
2. the design information of each model.

See ‘Details’ for more information.
grid Vector of integer values or character strings indicating the columns of the data.frame

containing the design data which will be gridded using the function lattice::levelplot().
See ‘Details’ for more information.

line Character string or integer value indicating which of the performance statis-
tics (usually calculated by statsMS()) should be plotted using the function
lattice::xyplot(). See ‘Details’ for more information.

ind Integer value indicating for which group of models the mean rank is to be cal-
culated. See ‘Details’ for more information.

type Vector of character strings indicating some of the effects to be used when plot-
ting the performance statistics using lattice::xyplot(). Defaults to type =
c("b", "g"). See lattice::panel.xyplot() for more information on how to
set this argument.

pch Vector with two integer values specifying the symbols to be used to plot points.
The first sets the symbol used to plot the performance statistic, while the second
sets the symbol used to plot the mean rank of the indicator set using argument
ind. Defaults to pch = c(20, 2). See graphics::points() for possible values
and their interpretation.

size Numeric value specifying the size of the symbols used for plotting the mean
rank of the indicator set using argument ind. Defaults to size = 0.5. See
grid::grid.points() for more information.

arrange Character string indicating how the model series should be arranged, which can
be in ascending ("asc") or descending ("desc", default) order.

color Vector defining the colors to be used in the grid produced by function lattice::levelplot().
If color = NULL, defaults to color = cm.colors(n), where n is the number of
unique values in the columns defined by argument grid. See grDevices::cm.colors()
to see how to use other color palettes.

plotModelSeries 25

xlim Numeric vector of length 2, giving the x coordinates range. If xlim = NULL
(which is the recommended value), defaults to xlim = c(0.5, dim(obj)[1] +
0.5). This is, so far, the optimum range for adequate plotting.

ylab Character vector of length 2, giving the y-axis labels. When obj is a data.frame
returned by statsMS(), and the performance statistic passed to argument line
is one of those calculated by statsMS() ("candidates", "df", "aic", "rmse",
"nrmse", "r2", "adj_r2", or "ADJ_r2"), the function tries to automatically
identify the correct ylab.

xlab Character vector of unit length, the x-axis label. Defaults xlab = "Model ranking".

at Numeric vector indicating the location of tick marks along the x axis (in native
coordinates).

... Other arguments for plotting, although most of these have no been tested. Argu-
ment asp, for example, is not effective since the function automatically identifies
the best aspect for plotting based on the dimensions of the design data.

Details

This section gives more details about arguments obj, grid, line, arrange, and ind.

obj: The argument obj usually constitutes a data.frame returned by statsMS(). However,
the user can use any data.frame object as far as it contains the two basic units of information
needed:

1. design data passed with argument grid
2. performance statistic passed with argument line

grid: The argument grid indicates the design data which is used to produce the grid output in
the top of the model series plot. By design we mean the data that specify the structure of each
model and how they differ from each other. Suppose that eight linear models were fit using three
types of predictor variables (a, b, and c). Each of these predictor variables is available in two
versions that differ by their accuracy, where 0 means a less accurate predictor variable, while 1
means a more accurate predictor variable. This yields 2^3 = 8 total possible combinations. The
design data would be of the following form:

> design
a b c

1 0 0 0
2 0 0 1
3 0 1 0
4 1 0 0
5 0 1 1
6 1 0 1
7 1 1 0
8 1 1 1

line: The argument line corresponds to the performance statistic that is used to arrange the
models in ascending or descending order, and to produce the line output in the bottom of the model
series plot. For example, it can be a series of values of adjusted coefficient of determination, one
for each model:

26 plotModelSeries

adj_r2 <- c(0.87, 0.74, 0.81, 0.85, 0.54, 0.86, 0.90, 0.89)

arrange: The argument arrange automatically arranges the model series according to the per-
formance statistics selected with argument line. If obj is a data.frame returned by statsMS(),
then the function uses standard arranging approaches. For most performance statistics, the models
are arranged in descending order. The exception is when "r2", "adj_r2", or "ADJ_r2" are used,
in which case the models are arranged in ascending order. This means that the model with lowest
value appears in the leftmost side of the model series plot, while the models with the highest value
appears in the rightmost side of the plot.

> arrange(obj, adj_r2)
id a b c adj_r2

1 5 1 0 1 0.54
2 2 0 0 1 0.74
3 3 1 0 0 0.81
4 4 0 1 0 0.85
5 6 0 1 1 0.86
6 1 0 0 0 0.87
7 8 1 1 1 0.89
8 7 1 1 0 0.90

This results suggest that the best performing model is that of id = 7, while the model of id = 5 is
the poorest one.

ind: The model series plot allows to see how the design influences model performance. This is
achieved mainly through the use of different colors in the grid output, where each unique value
in the design data is represented by a different color. For the example given above, one could try
to see if the models built with the more accurate versions of the predictor variables have a better
performance by identifying their relative distribution in the model series plot. The models placed
at the rightmost side of the plot are those with the best performance.
The argument ind provides another tool to help identifying how the design, more specifically
how each variable in the design data, influences model performance. This is done by simply
calculating the mean ranking of the models that were built using the updated version of each
predictor variable. This very same mean ranking is also used to rank the predictor variables and
thus identify which of them is the most important.
After arranging the design data described above using the adjusted coefficient of determination,
the following mean rank is obtained for each predictor variable:

> rank_center
a b c

1 5.75 6.25 5.25

This result suggests that the best model performance is obtained when using the updated version
of the predictor variable b. In the model series plot, the predictor variable b appears in the top
row, while the predictor variable c appears in the bottom row.

Value

An object of class "trellis" consisting of a model series plot.

plotModelSeries 27

Dependencies

The grDevices package, provider of graphics devices and support for colours and fonts in R, is
required for plotModelSeries() to work.

The grid package, a rewrite of the graphics layout capabilities in R, is required for plotModelSeries()
to work.

Warning

Use the original functions lattice::xyplot() and lattice::levelplot() for higher customiza-
tion.

Note

Some of the solutions used to build this function were found in the source code of the R-package
mvtsplot. As such, the author of that package, Roger D. Peng <rpeng@jhsph.edu>, is entitled
‘contributors’ to the R-package pedometrics.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Deepayan Sarkar (2008). Lattice: Multivariate Data Visualization with R. Springer, New York.
ISBN 978-0-387-75968-5.

Roger D. Peng (2008). A method for visualizing multivariate time series data. Journal of Statistical
Software. v. 25 (Code Snippet), p. 1-17.

Roger D. Peng (2012). mvtsplot: Multivariate Time Series Plot. R package version 1.0-1. https:
//CRAN.R-project.org/package=mvtsplot.

A. Samuel-Rosa, G. B. M. Heuvelink, G. de Mattos Vasques, and L. H. C. dos Anjos, Do more
detailed environmental covariates deliver more accurate soil maps?, Geoderma, vol. 243–244, pp.
214–227, May 2015, doi: 10.1016/j.geoderma.2014.12.017.

See Also

lattice::xyplot() lattice::levelplot()

Examples

if (all(require(grDevices), require(grid))) {
This example follows the discussion in section "Details"
Note that the data.frame is created manually
id <- c(1:8)
design <- data.frame(a = c(0, 0, 1, 0, 1, 0, 1, 1),

b = c(0, 0, 0, 1, 0, 1, 1, 1),
c = c(0, 1, 0, 0, 1, 1, 0, 1))

adj_r2 <- c(0.87, 0.74, 0.81, 0.85, 0.54, 0.86, 0.90, 0.89)
obj <- cbind(id, design, adj_r2)
p <- plotModelSeries(obj, grid = c(2:4), line = "adj_r2", ind = 1,

https://CRAN.R-project.org/package=mvtsplot
https://CRAN.R-project.org/package=mvtsplot

28 rowMinCpp

color = c("lightyellow", "palegreen"),
main = "Model Series Plot")

}

rowMinCpp Return the minimum value in each row of a numeric matrix

Description

This function returns the minimum value in each row of a numeric matrix.

Usage

rowMinCpp(x)

Arguments

x Numeric matrix with two or more rows and/or columns.

Details

This function is implemented in C++ to speed-up the computation time for large matrices.

Value

A numeric vector with the minimum value of each row if the matrix.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

See Also

rowMins() in https://cran.r-project.org/package=matrixStats.

Examples

x <- matrix(rnorm(20), nrow = 5)
rowMinCpp(x)

https://cran.r-project.org/package=matrixStats

skewness 29

skewness Moment coefficient of skewness

Description

Compute the moment coefficient of skewness of a continuous, possibly non-normal variable.

Usage

skewness(x)

Arguments

x Numeric vector, the values of the variable of interest.

Value

A numerical value: the moment coefficient of skewness of x.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

B. S. Everitt, The Cambridge Dictionary of Statistics, 3rd ed. Cambridge: Cambridge University
Press, 2006, p. 432.

D. N. Joanes and C. A. Gill, Comparing measures of sample skewness and kurtosis, J Royal Statis-
tical Soc D, vol. 47, no. 1, pp. 183–189, Mar. 1998, doi: 10.1111/1467-9884.00122.

H. Cramér, Mathematical Methods of Statistics. Princeton: Princeton University Press, 1946, p.
575.

Examples

x <- rlnorm(10)
skw <- skewness(x)

30 statsModelSeries

statsModelSeries Obtain performance statistics of a series of linear models

Description

Compute several statistics measuring the performance of a series of linear models built using
buildModelSeries(), with an option to rank the models based on one of the returned performance
statistics.

Usage

statsModelSeries(model, design.info, arrange.by, digits)

statsMS(model, design.info, arrange.by, digits)

Arguments

model A list of linear models returned by buildModelSeries().

design.info Extra information about the linear models in the series.

arrange.by Character string defining if the table with the performance statistics of the linear
models should be arranged, and which column should be used. Available op-
tions are "candidates", "df", "aic", "rmse", "nrmse", "r2", "adj_r2", and
"ADJ_r2". Descending order is used by default and cannot be changed in the
current implementation. See ‘Value’ for more information.

digits Integer or vector with six integers indicating the number of decimal places to be
used to round the performance statistics. If a vector is passed to the function,
the number of decimal places should be in the following order:
c("aic", "rmse", "nrmse", "r2", "adj_r2", "ADJ_r2").

Details

This function was devised to deal with a list of linear models generated by the function buildModelSeries().
The main objective is to compare several linear models using several performance statistics. Such
statistics can then be used to rank the linear models and identify, for example, the best performing
model, given the selected performance statistics.

An important feature of buildModelSeries() is that it uses the information about the initial num-
ber of candidate predictor variables offered to the build the model to calculate penalized or adjusted
measures of model performance. Such information is recorded as an attribute of the final model
selected by buildModelSeries(). This feature was included in statsModelSeries() because
data-driven variable selection results biased linear models (too optimistic), and the effective num-
ber of degrees of freedom is close to the number of candidate predictor variables initially offered to
the model (Harrell, 2001).

statsModelSeries 31

Value

A data frame with several performance statistics:

id Identification of the model.

candidates Number of candidate predictor variables initially offered to the model.

df Number of degrees of freedom of the final selected model.

aic Akaike’s Information Criterion (AIC). Obtained using extractAIC.

rmse Root-mean squared error, calculated based on the number of candidate predictor variables
initially offered to the model.

nrmse Normalized Root-mean squared error, calculated as the ratio between the RMSE and the
standard deviation of the observed values of the dependent variable.

r2 Multiple coefficient of determination.

adj_r2 Adjusted multiple coefficient of determination.

ADJ_r2 Adjusted multiple coefficient of determination. Calculations are done based on the num-
ber of candidate predictor variables initially offered to the model.

TODO

• Include other performance statistics such as: PRESS, BIC, Mallow’s Cp, max(VIF);

• Add option to select which performance statistics should be returned.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Harrell, F. E. (2001) Regression modelling strategies: with applications to linear models, logistic
regression, and survival analysis. First edition. New York: Springer.

Venables, W. N. and Ripley, B. D. (2002) Modern applied statistics with S. Fourth edition. New
York: Springer.

A. Samuel-Rosa, G. B. M. Heuvelink, G. de Mattos Vasques, and L. H. C. dos Anjos, Do more
detailed environmental covariates deliver more accurate soil maps?, Geoderma, vol. 243–244, pp.
214–227, May 2015, doi: 10.1016/j.geoderma.2014.12.017.

See Also

buildModelSeries(), plotModelSeries()

Examples

if (interactive()) {
based on the second example of function MASS:stepAIC()
require(MASS)
cpus1 <- cpus
for(v in names(cpus)[2:7])

32 stepVIF

cpus1[[v]] <- cut(cpus[[v]], unique(quantile(cpus[[v]])),
include.lowest = TRUE)

cpus0 <- cpus1[, 2:8] # excludes names, authors' predictions
cpus.samp <- sample(1:209, 100)
cpus.form <- list(formula(log10(perf) ~ syct + mmin + mmax + cach + chmin +

chmax + perf),
formula(log10(perf) ~ syct + mmin + cach + chmin + chmax),
formula(log10(perf) ~ mmax + cach + chmin + chmax + perf))

data <- cpus1[cpus.samp,2:8]
cpus.ms <- buildModelSeries(cpus.form, data, vif = TRUE, aic = TRUE)
cpus.des <- data.frame(a = c(0, 1, 0), b = c(1, 0, 1), c = c(1, 1, 0))
stats <- statsModelSeries(cpus.ms, design.info = cpus.des, arrange.by = "aic")

}

stepVIF Variable selection using the (generalized) variance-inflation factor
(VIF)

Description

This function takes a linear model and selects the subset of predictor variables that meet a user-
specific collinearity threshold measured by the (generalized) variance-inflation factor (VIF).

Usage

stepVIF(model, threshold = 10, verbose = FALSE)

Arguments

model Linear model (object of class ’lm’) containing collinear predictor variables.

threshold Positive number defining the maximum allowed VIF. Defaults to threshold =
10.

verbose Logical indicating if iteration results should be printed. Defaults to verbose =
FALSE.

Details

stepVIF starts computing the VIF of all predictor variables in the linear model. If the linear model
contains categorical predictor variables, generalized variance-inflation factors (GVIF) (Fox and
Monette, 1992), are calculated instead using car::vif(). GVIF is interpretable as the inflation in
size of the confidence ellipse or ellipsoid for the coefficients of the predictor variable in comparison
with what would be obtained for orthogonal, uncorrelated data. Since categorical predictors have
more than one degree of freedom, df, the confidence ellipsoid will have df dimensions, and GVIF
will need to be adjusted so that it can be comparable across predictor variables. The adjustment is
made using the following equation:

GV IF 1/(2×df)

stepVIF 33

The next step consists of evaluating if any of the predictor variables has a (G)VIF larger than the
specified threshold, the function default being threshold = 10. For, GVIF^(1/(2*df)), the threshold
will be sqrt(threshold).

If there is only one predictor variable that does not meet the VIF threshold, it is automatically
removed from the model and no further processing occurs. When there are two or more predictor
variables that do not meet the (G)VIF threshold, stepVIF() fits a linear model between each of
them and the dependent variable. The predictor variable with the lowest adjusted coefficient of
determination is dropped from the model and new coefficients are calculated, resulting in a new
linear model.

This process lasts until all predictor variables included in the new model meet the (G)VIF threshold.

Nothing is done if all predictor variables have a (G)VIF value lower that the threshold, and stepVIF()
returns the original linear model.

Value

A linear model (object of class ’lm’) with low collinearity.

Dependencies

The car package, provider of functions to accompany Fox and Weisberg’s An R Companion to
Applied Regression, is required for plotHist() to work. The development version of the car
package is available on https://r-forge.r-project.org/projects/car/ while its old versions
are available on the CRAN archive at https://cran.r-project.org/src/contrib/Archive/
car/.

Note

More on the use of GVIF to measure the collinearity in linear models containing categorical pre-
dictor variables can be found on StackExchange.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Fox, J. and Monette, G. (1992) Generalized collinearity diagnostics. JASA, 87, 178–183.

Fox, J. (2008) Applied Regression Analysis and Generalized Linear Models, Second Edition. Sage.

Fox, J. and Weisberg, S. (2011) An R Companion to Applied Regression, Second Edition. Thousand
Oaks: Sage.

Hair, J. F., Black, B., Babin, B. and Anderson, R. E. (2010) Multivariate data analysis. New Jersey:
Pearson Prentice Hall.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

A. Samuel-Rosa, G. B. M. Heuvelink, G. de Mattos Vasques, and L. H. C. dos Anjos, Do more
detailed environmental covariates deliver more accurate soil maps?, Geoderma, vol. 243–244, pp.
214–227, May 2015, doi: 10.1016/j.geoderma.2014.12.017.

https://r-forge.r-project.org/projects/car/
https://cran.r-project.org/src/contrib/Archive/car/
https://cran.r-project.org/src/contrib/Archive/car/
https://stats.stackexchange.com/questions/70679/

34 variogramBins

See Also

MASS::stepAIC()

Examples

if (require(car)) {
fit <- lm(prestige ~ income + education + type, data = Duncan)
fit <- stepVIF(fit, threshold = 10, verbose = TRUE)

}

variogramBins Variogram binning

Description

Computation of bins for sample (experimental) variograms.

Usage

variogramBins(
coords,
n.lags = 7,
type = "exp",
cutoff = 0.5,
base = 2,
zero = 0.001,
count = "pairs"

)

vgmLags(
coords,
n.lags = 7,
type = "exp",
cutoff = 0.5,
base = 2,
zero = 0.001,
count = "pairs"

)

Arguments

coords Data frame or matrix with the projected x- and y-coordinates.

n.lags Integer value defining the number of variogram bins (distance classes) that should
be computed. Defaults to n = 7.

type Character value defining the type of variogram bins that should be computed,
with options "equi" (equidistant, equal-width) and "exp" (exponential, expo-
nentially growing). Defaults to type = "exp".

variogramBins 35

cutoff Numeric value defining the fraction of the diagonal of the rectangle that spans
the data (bounding box) that should be used to set the maximum distance up to
which variogram bins should be computed. Defaults to cutoff = 0.5, i.e. half
the diagonal of the bounding box.

base Numeric value defining the base of the exponential expression used to create
exponentially growing variogram bins. Used only when type = "exp". Defaults
to base = 2, i.e. the width of the rightmost bin is equal to half the diagonal of
cutoff, and so on.

zero Numeric value setting the minimum pair-wise separation distance that should be
used to compute the variogram bins. Defaults to zero = 0.0001.

count Should the number of points ("points") or point-pairs ("pairs") per variogram
bin be computed? Defaults to count = "pairs".

Value

Vector of numeric values with the lower and upper boundaries of the variogram bins. The number
of points or point-pairs per variogram bin is returned as an attribute.

Dependencies

The SpatialTools package, provider of tools for spatial data analysis in R, is required for variogramBins()
to work. The development version of the SpatialTools package is available on https://github.
com/jfrench/SpatialTools while its old versions are available on the CRAN archive at https:
//cran.r-project.org/src/contrib/Archive/SpatialTools/.

Reverse dependencies

The spsann package, provider of methods for the optimization of sample configurations using spa-
tial simulated annealing in R, requires variogramBins() for some of its functions to work. The de-
velopment version of the spsann package is available on https://github.com/Laboratorio-de-Pedometria/
spsann-package.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Truong, P. N.; Heuvelink, G. B. M.; Gosling, J. P. Web-based tool for expert elicitation of the
variogram. Computers and Geosciences. v. 51, p. 390-399, 2013.

Examples

if (all(c(require(SpatialTools), require(sp)))) {
data(meuse, package = "sp")
lags_points <- variogramBins(coords = meuse[, 1:2], count = "points")
lags_pairs <- variogramBins(coords = meuse[, 1:2], count = "pairs")

}

https://github.com/jfrench/SpatialTools
https://github.com/jfrench/SpatialTools
https://cran.r-project.org/src/contrib/Archive/SpatialTools/
https://cran.r-project.org/src/contrib/Archive/SpatialTools/
https://github.com/Laboratorio-de-Pedometria/spsann-package
https://github.com/Laboratorio-de-Pedometria/spsann-package

36 variogramGuess

variogramGuess Guess the parameters of a spatial covariance function

Description

Guess the parameters of the spatial covariance function of a random, regionalized variable. A guess
of such parameters is required to start the fitting functions of many geostatistical packages such as
gstat, geoR, and georob.

Usage

variogramGuess(
z,
coords,
lags,
cutoff = 0.5,
method = "a",
min.npairs = 30,
model = "matern",
nu = 0.5,
estimator = "qn",
plotit = FALSE

)

vgmICP(
z,
coords,
lags,
cutoff = 0.5,
method = "a",
min.npairs = 30,
model = "matern",
nu = 0.5,
estimator = "qn",
plotit = FALSE

)

Arguments

z Numeric vector with the values of the regionalized variable for which the values
for the spatial covariance parameters should be guessed.

coords Data frame or matrix with the projected x- and y-coordinates.

lags Numeric scalar defining the width of the variogram bins or a numeric vector with
the lower and upper bounds of the variogram bins. If missing, the variogram bins
are computed using variogramBins(). See ‘Details’ for more information.

variogramGuess 37

cutoff Numeric value defining the fraction of the diagonal of the rectangle that spans
the data (bounding box) that should be used to set the maximum distance up to
which variogram bins should be computed. Defaults to cutoff = 0.5, i.e. half
the diagonal of the bounding box.

method Character keyword defining the method used for guessing the spatial covariance
parameters of the regionalized variable. Defaults to method = "a". See ‘Details’
for more information.

min.npairs Positive integer defining the minimum number of point-pairs required so that a
variogram bin is used to guessing the spatial covariance parameters of the of the
regionalized variable. Defaults to min.npairs = 30.

model Character keyword defining the spatial covariance function that will be fitted to
the data of the regionalized variable. Currently, most of the basic spatial covari-
ance function are accepted. See geoR::cov.spatial() for more information.
Defaults to model = "matern".

nu Numerical value for the additional smoothness parameter ν of the spatial covari-
ance function of the regionalized variable. See RandomFields::RMmodel() and
argument kappa of geoR::cov.spatial() for more information.

estimator Character keyword defining the estimator for computing the sample (experimen-
tal) variogram of the regionalized variable, with options "qn" (default), "mad",
"matheron", and "ch". See georob::sample.variogram() for more details.

plotit Should the guessed spatial covariance parameters be plotted along with the sam-
ple (experimental) variogram of the regionalized variable? Defaults to plotit
= FALSE.

Details

There are five methods two guess the covariance parameters. Two of them, "a" and "c", rely on a
sample variogram with exponentially growing variogram bins, while the other three, "b", "d", and
"e", use equal-width variogram bins (see variogramBins()). All of them are heuristic.

Method "a" was developed in-house and is the most elaborated of them, specially for guessing the
nugget variance.

Method "b" was proposed by doi:10.1016/00983004(95)00095XJian et al. (1996) and is imple-
mented in SAS/STAT(R) 9.22.

Method "c" is implemented in the automap-package and was developed by doi:10.1016/j.cageo.2008.10.011Hiemstra
et al. (2009).

Method "d" was developed by doi:10.1007/s1100401294341Desassis & Renard (2012).

Method "e" was proposed by Larrondo et al. (2003) http://www.ccgalberta.com/ccgresources/
report05/2003-122-varfit.pdf and is implemented in the VARFIT module of GSLIB http:
//www.gslib.com/.

Value

A vector of numerical values, the guesses for the spatial covariance parameters of the regionalized
variable:

• nugget

https://en.wikipedia.org/wiki/Heuristic
https://doi.org/10.1016/0098-3004%2895%2900095-X
https://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm#statug_variogram_a0000000593.htm
https://doi.org/10.1016/j.cageo.2008.10.011
https://doi.org/10.1007/s11004-012-9434-1
http://www.ccgalberta.com/ccgresources/report05/2003-122-varfit.pdf
http://www.ccgalberta.com/ccgresources/report05/2003-122-varfit.pdf
http://www.gslib.com/
http://www.gslib.com/

38 vgmSCV

• partial sill

• range

Dependencies

The georob package, provider of functions for the robust geostatistical analysis of spatial data in R,
is required for variogramGuess() to work. The old versions of the georob package are available
on the CRAN archive at https://cran.r-project.org/src/contrib/Archive/georob/.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Desassis, N. & Renard, D. Automatic variogram modelling by iterative least squares: univariate
and multivariate cases. Mathematical Geosciences. Springer Science + Business Media, v. 45, p.
453-470, 2012.

Hiemstra, P. H.; Pebesma, E. J.; Twenhöfel, C. J. & Heuvelink, G. B. Real-time automatic interpo-
lation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Computers
& Geosciences. Elsevier BV, v. 35, p. 1711-1721, 2009.

Jian, X.; Olea, R. A. & Yu, Y.-S. Semivariogram modelling by weighted least squares. Computers
& Geosciences. Elsevier BV, v. 22, p. 387-397, 1996.

Larrondo, P. F.; Neufeld, C. T. & Deutsch, C. V. VARFIT: a program for semi-automatic variogram
modelling. Edmonton: Department of Civil and Environmental Engineering, University of Alberta,
p. 17, 2003.

See Also

variogramBins()

Examples

if (all(c(require(sp), require(georob)))) {
data(meuse, package = "sp")
icp <- variogramGuess(z = log(meuse$copper), coords = meuse[, 1:2])

}

vgmSCV Spatially correlated variance (SCV)

Description

Compute the proportion of the variance that is spatially correlated.

https://cran.r-project.org/src/contrib/Archive/georob/

vgmSCV 39

Usage

vgmSCV(obj, digits = 4)

S3 method for class 'variomodel'
vgmSCV(obj, digits = 4)

S3 method for class 'variogramModel'
vgmSCV(obj, digits = 4)

S3 method for class 'georob'
vgmSCV(obj, digits = 4)

Arguments

obj Variogram model fitted with available function in geostatistical packages such
as gstat, geoR, and georob.

digits Integer indicating the number of decimal places to be used.

Value

Numeric value indicating the proportion of the variance that is spatially correlated.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

See Also

variogramBins()

Examples

if (all(c(require(gstat), require(sp)))) {
library(gstat)
library(sp)
data(meuse)
sp::coordinates(meuse) <- ~ x + y
vgm1 <- gstat::variogram(log(zinc) ~ 1, meuse)
fit <- gstat::fit.variogram(vgm1, gstat::vgm(1, "Sph", 300, 1))
res <- vgmSCV(fit)

}

Index

∗ hplot
plotModelSeries, 23

∗ misc
adjR2, 3
bbox2sp, 4

∗ spatial
bbox2sp, 4

∗ univar
rowMinCpp, 28

∗ variogram
variogramBins, 34
variogramGuess, 36
vgmSCV, 38

adjR2, 3
allFactor (isNumint), 16
allInteger (isNumint), 16
allNumeric (isNumint), 16
allNumint (isNumint), 16
anyFactor (isNumint), 16
anyInteger (isNumint), 16
anyNumeric (isNumint), 16
anyNumint (isNumint), 16

base::is.factor(), 17
base::is.integer(), 17
base::is.numeric(), 17
bbox2sp, 4
bbox2sp(), 4
breakPoints (cont2cat), 11
breakPoints(), 12
buildModelSeries, 5
buildModelSeries(), 6, 7, 23, 30, 31
buildMS (buildModelSeries), 5

car::bcPower(), 22
car::powerTransform(), 22
car::vif(), 32
cdfPlot (coordenadas), 13
cdfStats (coordenadas), 13

cdfTable (coordenadas), 13
checkGMU, 8
cont2cat, 11
cont2cat(), 12
coordenadas, 13
cramer, 14
cramer(), 14

fields::image.plot(), 18

gcpDiff (coordenadas), 13
gcpVector, 15
graphics::image(), 18
graphics::points(), 24
grDevices::cm.colors(), 24
grid::grid.points(), 24
gstat::variogram(), 19, 20

isNumint, 16

lattice::densityplot(), 22, 23
lattice::histogram(), 22, 23
lattice::levelplot(), 24, 27
lattice::panel.mathdensity(), 22, 23
lattice::panel.xyplot(), 24
lattice::print.trellis(), 22
lattice::update.trellis(), 22
lattice::xyplot(), 24, 27

MASS::stepAIC(), 5–7, 34

pedometrics (pedometrics-package), 2
pedometrics-package, 2
plotCor, 17
plotCor(), 18
plotESDA, 19
plotESDA(), 20
plotHD (plotHist), 21
plotHD(), 20, 22
plotHist, 21
plotHist(), 22, 33

40

INDEX 41

plotModelSeries, 23
plotModelSeries(), 27, 31
plotMS (plotModelSeries), 23

rowMinCpp, 28

skewness, 29
sp::bubble(), 20
sp::spplot(), 20
stats::lm(), 5
statsModelSeries, 30
statsModelSeries(), 6, 30
statsMS (statsModelSeries), 30
statsMS(), 7, 23–26
stepVIF, 32
stepVIF(), 5–7, 33
stratify (cont2cat), 11
stratify(), 12

trend.matrix (coordenadas), 13
trend.terms (coordenadas), 13

uniqueClass (isNumint), 16

variogramBins, 34
variogramBins(), 35–39
variogramGuess, 36
variogramGuess(), 38
vgmICP (variogramGuess), 36
vgmLags (variogramBins), 34
vgmSCV, 38

whichFactor (isNumint), 16
whichInteger (isNumint), 16
whichNumeric (isNumint), 16
whichNumint (isNumint), 16

	pedometrics-package
	adjR2
	bbox2sp
	buildModelSeries
	checkGMU
	cont2cat
	coordenadas
	cramer
	gcpVector
	isNumint
	plotCor
	plotESDA
	plotHist
	plotModelSeries
	rowMinCpp
	skewness
	statsModelSeries
	stepVIF
	variogramBins
	variogramGuess
	vgmSCV
	Index

